skip to navigation skip to content

All Social Sciences Research Methods Centre courses

Show only:

Showing courses 1-25 of 43
Courses per page: 10 | 25 | 50 | 100

Agent-based Modelling with Netlogo Tue 20 Feb 2018   14:00 [Places]

Societies can be viewed as path-dependent dynamical systems in which the interactions between multiple heterogeneous actors, and the institutions and organisations they create, lead to complex overlapping patterns of change over different space and time-scales. Agent-based models are exploratory tools for trying to understand some of this complexity. They use computational methods to represent individual people, households, organisations, or other types of agent, and help to make explicit the potential consequences of hypotheses about the way people act, interact and engage with their environment. These types of models have been used in fields as diverse as Architecture, Archaeology, Criminology, Economics, Epidemiology, Geography, and Sociology, covering all kinds of topics including social networks and formation of social norms, spatial distribution of criminal activity, spread of disease, issues in health and welfare, warfare and disasters, behaviour in stock-markets, land-use change, farming,forestry, fisheries, traffic flow, planning and development of cities, flooding and water management. This course introduces a popular freely available software tool, Netlogo, which is accessible to those with no initial programming experience, and shows how to use it to develop a variety of simple models so that students would be able to see how it might apply to their own research.

Basic Quantitative Analysis (BQA Intensive) Mon 22 Jan 2018   09:00 Finished

This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data.

Techniques to be covered include:

  • Cross-tabulations
  • Scatterplots
  • Covariance and correlation
  • Nonparametric methods
  • Two-sample t-tests
  • Ordinary Least Squares (OLS)

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

The challenge of causal inference is ubiquitous in social science. Nearly every research project fundamentally is about causes and effects. This course will introduce graduate students to core issues about causal inference in quantitative social research, focusing especially on how one can move from demonstrating correlation to causation. The first lecture will define key concepts of correlates, risk factors, causes, mediators and moderators. The second lecture will discuss quasi-experimental research designs (studies without random assignment), and issues of “validity” in drawing causal conclusions. The third and fourth sessions will be lectures and practicals introducing two key analytic methods (propensity score matching and fixed effects regression models) that can be used to help identify causes. The course will focus on studies in which individual people are the basic unit of analyses, particularly longitudinal studies which follow the same people over multiple waves of assessment.


  • Key concepts, from correlates to causes
  • Overview of quasi-experimental methods
  • Propensity Score Matching

Note: this module was originally advertised as also covering fixed-effects regression models. Fixed-effects models have now been dropped from the content; students wishing to learn about them should attend the SSRMC module on panel data methods

Comparative Historical Methods Tue 10 Oct 2017   16:00 Finished

These four sessions will introduce students to comparative historical research methods, emphasizing their qualitative dimensions. In the first session, we will analyze some contemporary classics within this genre. In the second and third sessions, we will review and distinguish among a variety of intellectual justifications for this genre as a methodology. In the final session, we will focus on a "state of the art" defence of qualitative and comparative-historical research, both in theory and practice.


  • To introduce students to the qualitative dimension of comparative historical research methods
  • To analyse some contemporary classics within this genre
  • To review and distinguish among the variety of intellectual justifications for this genre as a methodology
  • To focus on a 'state-of-the-art' defence of qualitative and comparative-historical research in theory and practice


  • Session 1: Classics
  • Session 2: Justifications I
  • Session 3: Justifications II
  • Session 4: State of the Art
Conversation and Discourse Analysis Tue 23 Jan 2018   16:00 Finished

The module will introduce students to the study of language use as a distinctive type of social practice. Attention will be focused primarily on the methodological and analytic principles of conversation analysis. (CA). However, it will explore the debates between CA and Critical Discourse Analysis (CDA), as a means of addressing the relationship between the study of language use and the study of other aspects of social life. It will also consider the roots of conversation analysis in the research initiatives of ethnomethodology, and the analysis of ordinary and institutional talk. It will finally consider the interface between CA and CDA.


  • Session 1: The Roots of Conversation Analysis
  • Session 2: Ordinary Talk
  • Session 3: Institutional Talk
  • Session 4: Conversation Analysis and Critical Discourse Analysis
Critical Approaches to Discourse Analysis Tue 20 Feb 2018   13:30 [Places]

The focus of these two sessions will be the linking of theory to method, paying particular attention to the relationship between language or other forms of representation or communication and the broader social milieu with special attention to power relations. The topic will be approached from a broadly Foucauldian angle: Foucault writes that discourse “consists of not—of no longer—treating discourses as groups of signs signifying elements referring to contents of representations, but as practices that systematically form the objects of which they speak.” The emphasis of these two lectures will be less upon what is known as ‘conversation analysis’ or ‘content analysis’ and more on methods based on post-positivist methods and critical theory which emphasize how language and other social practices create reality rather than reflect it, and thus methods of interpreting discourse are themselves not ideologically or politically neutral practices.

Session 1: The origins of critical discourse analysis (the Frankfurt school, Foucault, post-structuralism, feminism); how theoretical backgrounds shape research design
Session 2: 'Doing' discourse analysis: analysing methods and approaches

Doing Multivariate Analysis (DMA Intensive) Wed 24 Jan 2018   09:00 Finished

This module will introduce you to the theory and practice of multivariate analysis, covering Ordinary Least Squares (OLS) and logistic regressions. You will learn how to read published results critically, to do simple multivariate modelling yourself , and to interpret and write about your results intelligently.

Half of the module is based in the lecture theatre, and covers the theory behind multivariate regression; the other half is lab-based, in which students will work through practical exercises using statistical software.

To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models.

Doing Qualitative Interviews Tue 23 Jan 2018   14:00 Finished

Face-to-face interviews are used to collect a wide range of information in the social sciences. They are appropriate for the gathering of information on individual and institutional patterns of behaviour; complex histories or processes; identities and cultural meanings; routines that are not written down; and life-history events. Face-to-face interviews thus comprise an appropriate method to generate information on individual behaviour, the reasons for certain patterns of acting and talking, and the type of connection people have with each other.

The first session provides an overview of interviewing as a social research method, then focuses on the processes of organising and conducting qualitative interviews. The second session explores the ethics and practical constraints of interviews as a research method, particularly relevant when attempting to engage with marginalised or stigmatised communities. The third session focuses on organisation and analysis after interviews, including interpretation through coding and close reading. This session involves practical examples from qualitative analysis software. The final session provides an opportunity for a hands-on session, to which students should bring their interview material (at whatever stage of the process: whether writing interview questions, coding or analysing data) in order to receive advice and support in taking the interview material/data to the next stage of the research process.


1. Conducting qualitative interviews

2. Ethics and practical constraints

3. Practical session: interpretation and analysis

Ethnographic Methods Tue 20 Feb 2018   15:30 [Full]

This module is an introduction to ethnographic fieldwork and analysis.

The ethnographic method was originally developed in the field of social anthropology, but has grown in popularity across several disciplines, including sociology, geography, criminology, education and organization studies.

Ethnographic research is a largely qualitative method, based upon participant observation among small samples of people for extended periods. A community of research participants might be defined on the basis of ethnicity, geography, language, social class, or on the basis of membership of a group or organization. An ethnographer aims to engage closely with the culture and experiences of their research participants, to produce a holistic analysis of their fieldsite.

This module is intended for students in fields other than anthropology. It provides an introduction to contemporary debates in ethnography, and an outline of how selected methods may be used in ethnographic study.

Session 1: The Ethnographic Method What is ethnography? Can ethnographic research and writing be objective? How does one conduct ethnographic research responsibly and ethically?

Session 2: Photography and Audio Recording in Ethnographic Work What kinds of audiovisual equipment, and practices of photography and sound recording, can be used to support an ethnographer’s research process? What kinds of the epistemological, theoretical, social, and ethical considerations tend to arise around possible use of these technologies in anthropological fieldwork and analysis?

Evaluation Methods new Mon 19 Mar 2018   10:00 [Places]

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.


  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
Experimental Methods Tue 16 Jan 2018   14:00 Finished

This course will constitute a practical introduction to experimental method and design suitable for students from any discipline who have had limited experience of empirical methods but who wish to be able to read and understand the experimental literature or to undertake their own experimental studies. The course includes:

  • A theoretical introduction to the concepts and practices involved in experimental research in the human sciences, including ethical considerations;
  • An introduction to experimental design and to appropriate analytic techniques;
  • A practical component that can be undertaken away from the laboratory; and
  • An introduction to issues involved in writing up results.

At the end of the module, students will be equipped with the fundamental knowledge required to design and evaluate an experiment.

This course will introduce students to the approach called "Exploratory Data Analysis" (EDA) where the aim is to extract useful information from data, with an enquiring, open and sceptical mind. It is, in many ways, an antidote to many advanced modelling approaches, where researchers lose touch with the richness of their data. Seeing interesting patterns in the data is the goal of EDA, rather than testing for statistical significance. The course will also consider the recent critiques of conventional "significance testing" approaches that have led some journals to ban significance tests.

Students who take this course will hopefully get more out of their data, achieve a more balanced overview of data analysis in the social sciences.

  • To understand that the emphasis on statistical significance testing has obscured the goals of analysing data for many social scientists.
  • To discuss other ways in which the significance testing paradigm has perverted scientific research, such as through the replication crisis and fraud.
  • To understand the role of graphics in EDA
Factor Analysis Mon 12 Feb 2018   11:00 In progress

This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

  • Session 1: Exploratory Factor Analysis Introduction
  • Session 2: Factor Analysis Applications
  • Session 3: CFA and Path Analysis with STATA
  • Session 4: Introduction to SEM and programming
Foundations in Applied Statistics (FiAS Intensive) Wed 17 Jan 2018   09:00 Finished

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

This course will introduce students to the general philosophical debates concerning scientific methodology, assessing their ramifications for the conduct of qualitative social research. It will enable students to critically evaluate major programmes in the philosophy of sciences, considering whether there are important analytic differences between the social and natural sciences; and whether qualitative methods themselves comprise a unified approach to the study of social reality.


  • Session 1: Epistemological Foundations of Qualitative Social Research Part I
  • Session 2: Epistemological Foundations of Qualitative Social Research Part II
Further Topics in Multivariate Analysis (FTMA) Mon 29 Jan 2018   10:00 Finished

This module is an extension of the three previous modules in the Basic Statistics stream, and introduces more complex and nuanced aspects of the theory and practice of mutivariate analysis. Students will learn the theory behind the methods covered, how to implement them in practice, how to interpret their results, and how to write intelligently about their findings. Half of the module is based in the lecture theatre; the other half is lab-based, in which students will work through practical exercises using the statistical software Stata.

Topics covered include:

  • Interaction effects in regression models: how to estimate these and how to interpret them
  • Marginal effects from interacted models
  • Ordered and categorical discrete dependent variable models (ordered and multinomial logit and probit)

To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models.

Geographical Information Systems (GIS) Workshop Wed 7 Feb 2018   14:00 In progress

This module is shared with Geography. Students from the Department of Geography MUST book places on this course via the Department; any bookings made by Geography students via the SSRMC portal will be cancelled.

This workshop series aims to provide introductory training on Geographical Information Systems. Material covered includes the construction of geodatabases from a range of data sources, geovisualisation and mapping from geodatasets, raster-based modeling and presentation of maps and charts and other geodata outputs. Each session will start with an introductory lecture followed by practical exercises using GIS software.

Introduction to R (Lent) Tue 16 Jan 2018   14:00 Finished

This module introduces the use of R, a free programming language originally developed for statistical data analysis. In this course, we will use R through R Studio, a user-friendly interface.

Students will learn:

  • Ways of reading spreadsheet data into R
  • The notion of data type
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with ggplot2
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics (e.g. the t-test).

This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques using another software package (for example Stata or SPSS).

Introduction to Stata (Lent) Tue 30 Jan 2018   14:00 Finished

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMC. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

Introduction to Stata (Michaelmas) Tue 7 Nov 2017   14:00 Finished

The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMC. You will learn:

  • How to open and manage a dataset in Stata
  • How to recode variables
  • How to select a sample for analysis
  • The commands needed to perform simple statistical analyses in Stata
  • Where to find additional resources to help you as you progress with Stata

The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a "second language" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream.

Issues in Measurement: Validity and Reliability Mon 5 Feb 2018   14:00 Finished

This short two-hour course will provide an introduction to measurement issues in the social sciences. We design questions (or "survey instruments") to gain information on the concepts we are researching. Two prime considerations in whether an instrument is effective are validity (does our instrument actually measure what we want it to measure?) and reliability (does our instrument give consistent results across a range of different situations?)

Considerations of validity and reliability are important across many areas of social science, including the measurement of personality and mental health; attitudes; ability tests; political behaviour; cultural differences and similarities between various groups; and consumer behaviour.

The course will discuss what we mean by validity and reliability, the different ways we can think about the concepts, and different ways we can assess the quality of instruments using these criteria. We will also look at some statistical techniques for reliability and validity checks: Cronbach’s Alpha, Kappa coefficient, and Factor Analysis.

Meta Analysis Mon 12 Feb 2018   16:00 In progress

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

1. To understand and judge the results produced by a meta-analysis
2. To learn how to compute effects sizes based on dichotomous and continuous data
3. To become familiar with heterogeneity tests
4. To learn how to calculate and report subgroup analysis and meta-regression

Session 1: Computational formulas for effect sizes and their variance: fixed/random models
Session 2: Heterogeneity in effect sizes: Tau-squared, Tau, and I-squared
Session 3: Sub-group analysis and meta-regression
Session 4: Vote-counting; publication bias; criticism of meta-analysis

Microsoft Access: Database Design and Use Tue 21 Nov 2017   14:00 Finished

These two sessions will provide a basic introduction to the management and analysis of relational databases, using Microsoft Access and a set of historical datasets. The workshops will introduce participants to the following:

  • The use of Access’s menus and tool bars
  • Viewing and browsing data tables
  • Creating quick forms formulating queries
  • Developing queries using Boolean operators
  • Performing simple statistical operations
  • Linking tables and working with linked tables
  • Querying multiple tables
  • Data transformation.
Mixed Methods new Tue 24 Oct 2017   14:00 Finished

Neither quantitative nor qualitative data analysis has all the answers in social science research: qualitative research has depth and nuance but is not generalisable beyond the sample on which it is based, while quantitative research is generalisable but may lack depth.

A mixed methods approach, which uses evidence from both qualitative and quantitative approaches to shed light on a single research question, has the potential to gain the advantages of both approaches. However, genuine mixed methods work is not always easy. This short course will introduce students to the rationale behind the use of mixed methods approaches, and how to design mixed methods projects for best results.

Multilevel Modelling Wed 21 Feb 2018   09:00 [Full]

In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or family-level factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or family-level characteristics, as well as by the characteristics of the prison in which they are detained.

  • Introduction to Stata/MLM theory
  • Applications I - Random intercept models
  • Applications II - Random slope models
  • Applications III - Revision session/growth models
[Back to top]