skip to navigation skip to content

Social Sciences Research Methods Centre course timetable

Show:

Sat 24 Feb – Mon 30 Apr

Now Today

[ No events today ]

Monday 26 February

14:00
Public Policy Analysis (3 of 3) In progress 14:00 - 16:00 Department of Genetics, Biffen Lecture Theatre

The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but sample data and questions will be provided for students who wish to take the material into practice.

Session 1
How do we analyse policy development and change over time? The policy cycle and models of policy change In studying how policies are developed and chosen there are two different timescales to consider- the immediate process of policy development (the policy cycle) and the evolution of a policy over long periods of time (models of policy change). This session will outline both timescales and discuss how these models can be applied to study policy change, highlighting the contested nature of most models of policy.

Session 2
What tools do we use to analyse policy options I – CBA and MCDA in policy analysis Policy analysis is a distinct practice that is forward looking, taking an issue and trying to both develop options and to provide a decision framework for making a policy choice. This first of two sessions provides a brief overview of cost-benefit analysis (CBA) and multi-criteria decision analysis (MCDA) and gives examples of their use in policy decision making.

Session 3
What tools do we use to analyse policy options II – using regressions in policy analysis Much of the information that policymakers need is provided through the outputs of regression analysis of varying complexity. This session will review the output of ordinary least squares and logistic regressions and use examples of their use in policy to discuss the strengths and weaknesses of using regression analysis in different policy analysis contexts.

16:00
Meta Analysis (3 of 4) In progress 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

Aims:
1. To understand and judge the results produced by a meta-analysis
2. To learn how to compute effects sizes based on dichotomous and continuous data
3. To become familiar with heterogeneity tests
4. To learn how to calculate and report subgroup analysis and meta-regression

Session 1: Computational formulas for effect sizes and their variance: fixed/random models
Session 2: Heterogeneity in effect sizes: Tau-squared, Tau, and I-squared
Session 3: Sub-group analysis and meta-regression
Session 4: Vote-counting; publication bias; criticism of meta-analysis

Survey Research and Design (4 of 4) In progress 16:00 - 18:00 8 Mill Lane, Lecture Room 1

The module aims to provide students with an introduction to and overview of survey methods and its uses and limitations. It will introduce students both to some of the main theoretical issues involved in survey research (such as survey sampling, non-response and question wording) and to practicalities of the design and analysis of surveys. The module consists of four two-hour sessions, each of which has two parts.

The first hour of each session will consist of a lecture. The four lectures cover: the background to and history of survey research (with examples mostly drawn from political polling); an overview of the issues involved in analysing data from surveys conducted by others and some practical advice on how to evaluate such data; issues of sampling, non-response and different ways of doing surveys; issues related to questionnaire design (question wording, answer options, etc.) and ethical considerations. These lectures are relevant for all students taking the module, irrespective of whether they will conduct surveys themselves or are 'passive' users of survey results. Students who have attended these lectures will be able to evaluate research that uses surveys, in particular to understand issues concerning sample selection, response bias and data analysis; to appreciate and understand basic principles of questionnaire design; and to trace appropriate sources of data and appropriate exemplars of good survey practice.

The second hour of each session will focus more on the practical aspects of designing surveys and will feature some practical exercises. The focus will primarily be on issues directly related to questionnaires (and less on issues of sampling), such as the wording of questions, the order of questions, and the use of different answer options. Most of the exercises will be provided by the instructors (and we may provide opportunities to field successful exercises as part of YouGov surveys), but there will also be opportunities for students to bring in examples of surveys they would like to develop for their own research (and participants in the sessions may be asked to answer each other's surveys as a pilot test). We encourage all students registered for the module to attend these second parts of the sessions, but it will be of most direct relevant to who are using, or plan to use, surveys in their research. (It should also be noted that all students attending the second hour of the sessions are expected to participate and engage with the exercises.)

Tuesday 27 February

13:30
Critical Approaches to Discourse Analysis (2 of 2) In progress 13:30 - 15:00 8 Mill Lane, Lecture Room 1

The focus of these two sessions will be the linking of theory to method, paying particular attention to the relationship between language or other forms of representation or communication and the broader social milieu with special attention to power relations. The topic will be approached from a broadly Foucauldian angle: Foucault writes that discourse “consists of not—of no longer—treating discourses as groups of signs signifying elements referring to contents of representations, but as practices that systematically form the objects of which they speak.” The emphasis of these two lectures will be less upon what is known as ‘conversation analysis’ or ‘content analysis’ and more on methods based on post-positivist methods and critical theory which emphasize how language and other social practices create reality rather than reflect it, and thus methods of interpreting discourse are themselves not ideologically or politically neutral practices.

Session 1: The origins of critical discourse analysis (the Frankfurt school, Foucault, post-structuralism, feminism); how theoretical backgrounds shape research design
Session 2: 'Doing' discourse analysis: analysing methods and approaches

14:00
Agent-based Modelling with Netlogo (2 of 2) In progress 14:00 - 18:00 8 Mill Lane, Lecture Room 5

Societies can be viewed as path-dependent dynamical systems in which the interactions between multiple heterogeneous actors, and the institutions and organisations they create, lead to complex overlapping patterns of change over different space and time-scales. Agent-based models are exploratory tools for trying to understand some of this complexity. They use computational methods to represent individual people, households, organisations, or other types of agent, and help to make explicit the potential consequences of hypotheses about the way people act, interact and engage with their environment. These types of models have been used in fields as diverse as Architecture, Archaeology, Criminology, Economics, Epidemiology, Geography, and Sociology, covering all kinds of topics including social networks and formation of social norms, spatial distribution of criminal activity, spread of disease, issues in health and welfare, warfare and disasters, behaviour in stock-markets, land-use change, farming,forestry, fisheries, traffic flow, planning and development of cities, flooding and water management. This course introduces a popular freely available software tool, Netlogo, which is accessible to those with no initial programming experience, and shows how to use it to develop a variety of simple models so that students would be able to see how it might apply to their own research.

15:30
Ethnographic Methods (2 of 2) In progress 15:30 - 17:00 8 Mill Lane, Lecture Room 6

This module is an introduction to ethnographic fieldwork and analysis.

The ethnographic method was originally developed in the field of social anthropology, but has grown in popularity across several disciplines, including sociology, geography, criminology, education and organization studies.

Ethnographic research is a largely qualitative method, based upon participant observation among small samples of people for extended periods. A community of research participants might be defined on the basis of ethnicity, geography, language, social class, or on the basis of membership of a group or organization. An ethnographer aims to engage closely with the culture and experiences of their research participants, to produce a holistic analysis of their fieldsite.

This module is intended for students in fields other than anthropology. It provides an introduction to contemporary debates in ethnography, and an outline of how selected methods may be used in ethnographic study.

Session 1: The Ethnographic Method What is ethnography? Can ethnographic research and writing be objective? How does one conduct ethnographic research responsibly and ethically?

Session 2: Photography and Audio Recording in Ethnographic Work What kinds of audiovisual equipment, and practices of photography and sound recording, can be used to support an ethnographer’s research process? What kinds of the epistemological, theoretical, social, and ethical considerations tend to arise around possible use of these technologies in anthropological fieldwork and analysis?

Wednesday 28 February

09:00
Structural Equation Modelling (Intensive) (1 of 2) [Full] 09:00 - 13:00 University Information Services, Titan Teaching Room 1, New Museums Site

This intensive one-day course on structural equation modelling will provide an introduction to SEM using the statistical software Stata. The aim of the course is to introduce structural equation modelling as an analytical framework and to familiarize participants with the applications of the technique in the social sciences. The theoretical introduction will be accompanied by practical examples based on real, publicly-available data. Topics will also include:

  • Introduction to the general principles of SEM
  • Latent variables, measurement models, and confirmatory factor analysis
  • Path analysis and mediation analysis, with practical application in Stata
  • Confirmatory factor analysis and latent variable models
14:00
Geographical Information Systems (GIS) Workshop (4 of 4) In progress 14:00 - 16:00 Department of Geography, Downing Site - Top Lab

This module is shared with Geography. Students from the Department of Geography MUST book places on this course via the Department; any bookings made by Geography students via the SSRMC portal will be cancelled.

This workshop series aims to provide introductory training on Geographical Information Systems. Material covered includes the construction of geodatabases from a range of data sources, geovisualisation and mapping from geodatasets, raster-based modeling and presentation of maps and charts and other geodata outputs. Each session will start with an introductory lecture followed by practical exercises using GIS software.

Structural Equation Modelling (Intensive) (2 of 2) [Full] 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This intensive one-day course on structural equation modelling will provide an introduction to SEM using the statistical software Stata. The aim of the course is to introduce structural equation modelling as an analytical framework and to familiarize participants with the applications of the technique in the social sciences. The theoretical introduction will be accompanied by practical examples based on real, publicly-available data. Topics will also include:

  • Introduction to the general principles of SEM
  • Latent variables, measurement models, and confirmatory factor analysis
  • Path analysis and mediation analysis, with practical application in Stata
  • Confirmatory factor analysis and latent variable models

Monday 5 March

14:00
Weighting and Imputation new [Places] 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

In order for the findings of statistical analysis to be generalisable, the sample on which the analysis is based should be representative of the population from which it is drawn. But it is well known that some groups are under-represented in social science surveys: they may be harder to contact in the first place, less likely to agree to participate in the survey, or less likely to answer particular questions even if they do agree to participate.

This short module will introduce students to the techniques used by survey statisticians to overcome these problems. Weighting is used to deal with the problem of certain groups being under-represented in the sample; imputation is used to deal with missing answers to individual questions. Students will learn how and why weighting and imputation work, and will be taken through practical lab-based exercises which will teach them how to work with secondary data containing weights or imputed values.

16:00
Meta Analysis (4 of 4) In progress 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

In this module students will be introduced to meta-analysis, a powerful statistical technique allowing researchers to synthesize the available evidence for a given research question using standardized (comparable) effect sizes across studies. The sessions teach students how to compute treatment effects, how to compute effect sizes based on correlational studies, how to address questions such as what is the association of bullying victimization with depression? The module will be useful for students who seek to draw statistical conclusions in a standardized manner from literature reviews they are conducting.

Aims:
1. To understand and judge the results produced by a meta-analysis
2. To learn how to compute effects sizes based on dichotomous and continuous data
3. To become familiar with heterogeneity tests
4. To learn how to calculate and report subgroup analysis and meta-regression

Session 1: Computational formulas for effect sizes and their variance: fixed/random models
Session 2: Heterogeneity in effect sizes: Tau-squared, Tau, and I-squared
Session 3: Sub-group analysis and meta-regression
Session 4: Vote-counting; publication bias; criticism of meta-analysis

Tuesday 6 March

14:00
Secondary Data Analysis new [Full] 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

Using secondary data (that is, data collected by someone else, usually a government agency or large research organisation) has a number of advantages in social science research: sample sizes are usually larger than can be achieved by primary data collection, samples are more nearly representative of the populations they are drawn from, and using secondary data for a research project often represents significant savings in time and money. This short course, taught by Dr Deborah Wiltshire of the UK Data Archive, will discuss the advantages and limitations of using secondary data for research in the social sciences, and will introduce students to the wide range of available secondary data sources. The course is based in a computer lab; students will learn how to search online for suitable secondary data by browsing the database of the UK Data Archive.

Wednesday 7 March

13:00
Causal Inference in Quantitative Social Research (Intensive) (1 of 2) [Full] 13:00 - 14:00 8 Mill Lane, Lecture Room 1

The challenge of causal inference is ubiquitous in social science. Nearly every research project fundamentally is about causes and effects. This course will introduce graduate students to core issues about causal inference in quantitative social research, focusing especially on how one can move from demonstrating correlation to causation. The first lecture will define key concepts of correlates, risk factors, causes, mediators and moderators. The second lecture will discuss quasi-experimental research designs (studies without random assignment), and issues of “validity” in drawing causal conclusions. The third and fourth sessions will be lectures and practicals introducing two key analytic methods (propensity score matching and fixed effects regression models) that can be used to help identify causes. The course will focus on studies in which individual people are the basic unit of analyses, particularly longitudinal studies which follow the same people over multiple waves of assessment.

Topics:

  • Key concepts, from correlates to causes
  • Overview of quasi-experimental methods
  • Propensity Score Matching

Note: this module was originally advertised as also covering fixed-effects regression models. Fixed-effects models have now been dropped from the content; students wishing to learn about them should attend the SSRMC module on panel data methods https://www.training.cam.ac.uk/jsss/event/2141519

14:00
Causal Inference in Quantitative Social Research (Intensive) (2 of 2) [Full] 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

The challenge of causal inference is ubiquitous in social science. Nearly every research project fundamentally is about causes and effects. This course will introduce graduate students to core issues about causal inference in quantitative social research, focusing especially on how one can move from demonstrating correlation to causation. The first lecture will define key concepts of correlates, risk factors, causes, mediators and moderators. The second lecture will discuss quasi-experimental research designs (studies without random assignment), and issues of “validity” in drawing causal conclusions. The third and fourth sessions will be lectures and practicals introducing two key analytic methods (propensity score matching and fixed effects regression models) that can be used to help identify causes. The course will focus on studies in which individual people are the basic unit of analyses, particularly longitudinal studies which follow the same people over multiple waves of assessment.

Topics:

  • Key concepts, from correlates to causes
  • Overview of quasi-experimental methods
  • Propensity Score Matching

Note: this module was originally advertised as also covering fixed-effects regression models. Fixed-effects models have now been dropped from the content; students wishing to learn about them should attend the SSRMC module on panel data methods https://www.training.cam.ac.uk/jsss/event/2141519

Wednesday 14 March

09:00
Panel Data Analysis (Intensive) (1 of 2) [Places] 09:00 - 13:00 8 Mill Lane, Lecture Room 5

This module provides an applied introduction to panel data analysis (PDA). Panel data are gathered by taking repeated observations from a series of research units (eg. individuals, firms) as they move through time. This course focuses primarily on panel data with a large number of research units tracked for a relatively small number of time points.

The module begins by introducing key concepts, benefits and pitfalls of PDA. Students are then taught how to manipulate and describe panel data in Stata. The latter part of the module introduces random and fixed effects panel models for continuous and dichotomous outcomes. The course is taught through a mixture of lectures and practical sessions designed to give students hands-on experience of working with real-world data from the British Household Panel Survey.

  • Introduction to PDA: Concepts and uses
  • Manipulating and describing panel data
  • An overview of random effects, fixed effects and ‘hybrid’ panel models
  • Panel models for dichotomous outcomes
14:00
Panel Data Analysis (Intensive) (2 of 2) [Places] 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This module provides an applied introduction to panel data analysis (PDA). Panel data are gathered by taking repeated observations from a series of research units (eg. individuals, firms) as they move through time. This course focuses primarily on panel data with a large number of research units tracked for a relatively small number of time points.

The module begins by introducing key concepts, benefits and pitfalls of PDA. Students are then taught how to manipulate and describe panel data in Stata. The latter part of the module introduces random and fixed effects panel models for continuous and dichotomous outcomes. The course is taught through a mixture of lectures and practical sessions designed to give students hands-on experience of working with real-world data from the British Household Panel Survey.

  • Introduction to PDA: Concepts and uses
  • Manipulating and describing panel data
  • An overview of random effects, fixed effects and ‘hybrid’ panel models
  • Panel models for dichotomous outcomes

Monday 19 March

10:00
Evaluation Methods new (1 of 4) [Places] 10:00 - 12:45 8 Mill Lane, Lecture Room 2

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
13:45
Evaluation Methods new (2 of 4) [Places] 13:45 - 17:00 University Information Services, Titan Teaching Room 1, New Museums Site

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.

Tuesday 20 March

10:00
Evaluation Methods new (3 of 4) [Places] 10:00 - 12:45 8 Mill Lane, Lecture Room 2

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
13:30
Evaluation Methods new (4 of 4) [Places] 13:30 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.

Wednesday 25 April

09:00
Randomised Controlled Trials: (Almost) Everything You Need to Know (1 of 2) [Places] 09:00 - 13:00 Venue TBC

Standard statistical techniques in the social sciences are good at uncovering relationships between variables, but less good at establishing whether these relationships are causal. If A and B are correlated, does that mean A "causes" B? That B "causes" A? Or could both A and B be driven by a third factor C?

Randomised controlled trials are a type of study often considered to be the gold standard in uncovering this kind of causality. Many students and early-career researchers avoid RCTs, assuming they are complex and expensive to run. However, that need not be the case. This module will explain the theory of RCTs, how they are implemented, and will encourage participants to think about how they might design an RCT in their own field of work.

14:00
Randomised Controlled Trials: (Almost) Everything You Need to Know (2 of 2) [Places] 14:00 - 18:00 Venue TBC

Standard statistical techniques in the social sciences are good at uncovering relationships between variables, but less good at establishing whether these relationships are causal. If A and B are correlated, does that mean A "causes" B? That B "causes" A? Or could both A and B be driven by a third factor C?

Randomised controlled trials are a type of study often considered to be the gold standard in uncovering this kind of causality. Many students and early-career researchers avoid RCTs, assuming they are complex and expensive to run. However, that need not be the case. This module will explain the theory of RCTs, how they are implemented, and will encourage participants to think about how they might design an RCT in their own field of work.

Monday 30 April

14:00
Exploratory Data Analysis and Critiques of Significance Testing [Places] 14:00 - 17:00 8 Mill Lane, Lecture Room 1

This course will introduce students to the approach called "Exploratory Data Analysis" (EDA) where the aim is to extract useful information from data, with an enquiring, open and sceptical mind. It is, in many ways, an antidote to many advanced modelling approaches, where researchers lose touch with the richness of their data. Seeing interesting patterns in the data is the goal of EDA, rather than testing for statistical significance. The course will also consider the recent critiques of conventional "significance testing" approaches that have led some journals to ban significance tests.

Students who take this course will hopefully get more out of their data, achieve a more balanced overview of data analysis in the social sciences.

  • To understand that the emphasis on statistical significance testing has obscured the goals of analysing data for many social scientists.
  • To discuss other ways in which the significance testing paradigm has perverted scientific research, such as through the replication crisis and fraud.
  • To understand the role of graphics in EDA