Cambridge Research Methods (CaRM) course timetable
Wednesday 29 November 2023
10:00 |
Social Network Analysis
Finished
Social Network Analysis (SNA) is “a distinct research perspective in the behavioural and social sciences” because it elevates relationships as the primary unit of analysis when attempting to understand and explain social phenomena (Wasserman and Faust, 1994, p. 4). This methods module will introduce you to network research tools used to explore the social constructs that surround all of us, continuously facilitating and frustrating our individual ambitions. Each of our three sessions will focus on a primary component of modern SNA: relational data collection, network visualisation, and descriptive network statistics and modelling. We will use real relational datasets from historical network studies. Participants will also be encouraged to develop their own relational data and complete a basic descriptive analysis and network visualisation of their data. This module will make use of web-based tools and open-source options in the R environment. However, no previous training in SNA methods or R will be assumed by the instructor. |
14:00 |
Data Visualisation Using Python
Finished
The module explores Good Data Visualisation (GDV) and graph creation using Python. In this module we demystify the principles of data visualisation, using Python software, to help researchers to better understand and reflect how the “5 Principles” of GDV can be achieved. We also examine how we can develop Python’s application in data visualisation beyond analysis. Students will have the opportunity to apply GDV knowledge and skills to data using Python in an online Zoom, self-paced, practical workshop. In addition there will be post-class exercises and a 1-hour asynchronous Q&A forum on Moodle Forum. |
Thursday 30 November 2023
10:00 |
Doing Multivariate Analysis (DMA-2)
Finished
This module will introduce you to the theory and practice of multivariate analysis, covering Ordinary Least Squares (OLS) and logistic regressions. You will learn how to read published results critically, to do simple multivariate modelling yourself, and to interpret and write about your results intelligently. Half of the module is based in the lecture theatre, and covers the theory behind multivariate regression; the other half is lab-based, in which students will work through practical exercises using statistical software. To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models. |
14:00 |
Doing Multivariate Analysis (DMA-2)
Finished
This module will introduce you to the theory and practice of multivariate analysis, covering Ordinary Least Squares (OLS) and logistic regressions. You will learn how to read published results critically, to do simple multivariate modelling yourself, and to interpret and write about your results intelligently. Half of the module is based in the lecture theatre, and covers the theory behind multivariate regression; the other half is lab-based, in which students will work through practical exercises using statistical software. To get the most out of the course, you should also expect to spend some time between sessions having fun by building your own statistical models. |
Tuesday 5 December 2023
17:30 |
Open Source Investigation for Academics is methodology course run by Cambridge’s Digital Verification Corps, in partnership with Cambridge’s Centre of Governance and Human Rights, Social Sciences Research Methods Programme and Cambridge Digital Humanities, as well as with the Citizen Evidence Lab at Amnesty International. NB. Places on this module are extremely limited, so please only make a booking if you are able to attend all of the sessions. |
Tuesday 16 January 2024
16:00 |
This module introduces focus group research as a qualitative research method. Attention is given to the key elements and methodological consideration of conducting focus group research. It also explores the process of conducting focus group research, where students are given the opportunity to design focus group questions, and to experience the role of researcher in the practical workshops. |
Thursday 18 January 2024
10:00 |
Introduction to Stata (LT)
Finished
The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:
The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream. |
14:00 |
Introduction to Stata (LT)
Finished
The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:
The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream. |
16:00 |
This module is for anyone considering studying on an SSRMP module but not sure which one/s to choose. It provides an overview of the research process and issues in research design. Through reflection on a broad overview of empirical research, the module aims to encourage students to consider where they may wish to develop their research skills and knowledge. The module will signpost the different modules, both quantitative and qualitative, offered by SSRMP and encourage students to consider what modules might be appropriate for their research and career development. Please note: This module has pre-recorded lectures which need to be watched before the live workshop session. |
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
Friday 19 January 2024
10:00 |
Introduction to Stata (LT)
Finished
The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:
The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream. |
14:00 |
Introduction to Stata (LT)
Finished
The course will provide students with an introduction to the popular and powerful statistics package Stata. Stata is commonly used by analysts in both the social and natural sciences, and is the statistics package used most widely by the SSRMP. You will learn:
The course is intended for students who already have a working knowledge of statistics - it's designed primarily as a ""second language"" course for students who are already familiar with another package, perhaps R or SPSS. Students who don't already have a working knowledge of applied statistics should look at courses in our Basic Statistics Stream. |
Monday 22 January 2024
10:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
|
14:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
Public Policy Analysis
Finished
The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but some sample data and questions will be provided for students who wish to take the material into practice. |
|
16:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
This module introduces focus group research as a qualitative research method. Attention is given to the key elements and methodological consideration of conducting focus group research. It also explores the process of conducting focus group research, where students are given the opportunity to design focus group questions, and to experience the role of researcher in the practical workshops. |
Tuesday 23 January 2024
10:00 |
Causal Inference Methods
Finished
The module introduces causal inference methods that are commonly used in quantitative research, in particularly social policy evaluations. It covers the contexts and principles as well as applications of several specific methods - instrumental variable approach, regression discontinuity design, and difference-in-differences analysis. Key aspects of the module include investigations of the theoretical basis, statistical process, and illustrative examples drawn from research papers published on leading academic journals. The module incorporates both formal lecturing and lab practice to facilitate understanding and applications of the specific methods covered. The module is suitable for those who are interested in quantitative research and analysis of causality across a range of topics in social sciences. |
14:00 |
Causal Inference Methods
Finished
The module introduces causal inference methods that are commonly used in quantitative research, in particularly social policy evaluations. It covers the contexts and principles as well as applications of several specific methods - instrumental variable approach, regression discontinuity design, and difference-in-differences analysis. Key aspects of the module include investigations of the theoretical basis, statistical process, and illustrative examples drawn from research papers published on leading academic journals. The module incorporates both formal lecturing and lab practice to facilitate understanding and applications of the specific methods covered. The module is suitable for those who are interested in quantitative research and analysis of causality across a range of topics in social sciences. |
16:00 |
Ethics and the associated process of approval / review are an important component of any research project, not only practically enabling research to take place but also enabling researchers to consider the values underpinning their research. The aim of this course is to take both a practical and reflective approach to ethics. On a practical level, the course will focus on identifying the steps involved in seeking ethical approval or undertaking an ethical review. On a reflective level, the course will explore the values informing key ethical principles and concepts and how these may relate to individual’s research. |
17:30 |
Open Source Investigation for Academics is methodology course run by Cambridge’s Digital Verification Corps, in partnership with Cambridge’s Centre of Governance and Human Rights, Social Sciences Research Methods Programme and Cambridge Digital Humanities, as well as with the Citizen Evidence Lab at Amnesty International. NB. Places on this module are extremely limited, so please only make a booking if you are able to attend all of the sessions. |
Wednesday 24 January 2024
10:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
|
14:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
16:00 |
This is an introductory course for students who have little or no prior training in statistics. The module is divided between pre-recorded mini-lectures, in which you'll learn the relevant theory, and hands-on live practical sessions in Zoom, in which you will learn how to analyse real data using the statistical package, Stata. You will learn:
|
This module introduces focus group research as a qualitative research method. Attention is given to the key elements and methodological consideration of conducting focus group research. It also explores the process of conducting focus group research, where students are given the opportunity to design focus group questions, and to experience the role of researcher in the practical workshops. |