Cambridge Research Methods (CaRM) course timetable
Thursday 25 January
10:00 |
Causal Inference Methods
Finished
The module introduces causal inference methods that are commonly used in quantitative research, in particularly social policy evaluations. It covers the contexts and principles as well as applications of several specific methods - instrumental variable approach, regression discontinuity design, and difference-in-differences analysis. Key aspects of the module include investigations of the theoretical basis, statistical process, and illustrative examples drawn from research papers published on leading academic journals. The module incorporates both formal lecturing and lab practice to facilitate understanding and applications of the specific methods covered. The module is suitable for those who are interested in quantitative research and analysis of causality across a range of topics in social sciences. |
14:00 |
Digital and Online Research Methods
Finished
Virtual Data Collection in the Time of COVID-19: Practical and Ethical Considerations Doing data collection in the time of COVID-19 has required the adaptation of existing approaches. While face-to-face data collection is not feasible during the COVID-19 crisis, phone- and internet-based interviews offer an alternative means of collecting primary data. In this workshop, we discus key practical and ethical issues concerning virtual approaches to data collection. We provide practical examples drawing on two related research projects that took place in a lower-middle income context during the Covid-19 school closures. |
Causal Inference Methods
Finished
The module introduces causal inference methods that are commonly used in quantitative research, in particularly social policy evaluations. It covers the contexts and principles as well as applications of several specific methods - instrumental variable approach, regression discontinuity design, and difference-in-differences analysis. Key aspects of the module include investigations of the theoretical basis, statistical process, and illustrative examples drawn from research papers published on leading academic journals. The module incorporates both formal lecturing and lab practice to facilitate understanding and applications of the specific methods covered. The module is suitable for those who are interested in quantitative research and analysis of causality across a range of topics in social sciences. |
|
16:00 |
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
An Introduction to Embodied Inquiry
Finished
This short course introduces Embodied Inquiry as a research method interested in knowledge generated through the body, not just knowledge of the body. Embodied Inquiry has gained traction as a creative research method capable of challenging the mind-body split and exploring the possible role of the body in research, both for the researcher and for participants. The course will provide a broad overview of the theoretical grounding for embodied inquiry, what embodied inquiry can look like within the social sciences as well as the benefits and pitfalls of embodied inquiry as a method. In addition, the course will provide opportunities to consider how embodied inquiry might relate to individual’s research projects and identifying where to find out more about embodied inquiry. |
Friday 26 January
14:00 |
Digital and Online Research Methods
Finished
Virtual Data Collection in the Time of COVID-19: Practical and Ethical Considerations Doing data collection in the time of COVID-19 has required the adaptation of existing approaches. While face-to-face data collection is not feasible during the COVID-19 crisis, phone- and internet-based interviews offer an alternative means of collecting primary data. In this workshop, we discus key practical and ethical issues concerning virtual approaches to data collection. We provide practical examples drawing on two related research projects that took place in a lower-middle income context during the Covid-19 school closures. |
Monday 29 January
10:00 |
Basic Quantitative Analysis (BQA-5)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
Basic Quantitative Analysis (BQA-6)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
|
14:00 |
Basic Quantitative Analysis (BQA-5)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
Public Policy Analysis
Finished
The analysis of policy depends on many disciplines and techniques and so is difficult for many researchers to access. This module provides a mixed perspective on policy analysis, taking both an academic and a practitioner perspective. This is because the same tools and techniques can be used in academic research on policy options and change as those used in practice in a policy environment. This course is provided as three 2 hour sessions delivered as a mix of lectures and seminars. No direct analysis work will be done in the sessions themselves, but some sample data and questions will be provided for students who wish to take the material into practice. |
|
16:00 |
Basic Quantitative Analysis (BQA-6)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
|
Content analysis has been widely used to study different sources of data, such as interviews, conversations, speeches, and other texts. This module adopts an interactive approach, where students are introduced to the key elements of content analysis, how to conduct content analysis, and a range of examples of the use of content analysis. This module offers two practical workshops, where students have a hands-on opportunity to practice performing content analysis, followed by guided reflection. |
Tuesday 30 January
10:30 |
Doing Qualitative Interviews
Finished
Face-to-face interviews are used to collect a wide range of information in the social sciences. They are appropriate for the gathering of information on individual and institutional patterns of behaviour; complex histories or processes; identities and cultural meanings; routines that are not written down; and life-history events. Face-to-face interviews thus comprise an appropriate method to generate information on individual behaviour, the reasons for certain patterns of acting and talking, and the type of connection people have with each other. The first session provides an overview of interviewing as a social research method, then focuses on the processes of organising and conducting qualitative interviews. The second session explores the ethics and practical constraints of interviews as a research method, particularly relevant when attempting to engage with marginalised or stigmatised communities. The third session focuses on organisation and analysis after interviews, including interpretation through coding and close reading. In Lent Term, the online resources are supported by 1 x zoom Q&A session, and 2 x in-person workshops. During the first in-person workshop students will role-play interviews using the scenarios outlined in the course moodle pages. During the second in-person workshop students will work in pairs on their interview material (at whatever stage of the process: whether writing interview questions, coding or analysing data) in order to receive advice and support in taking the interview material/data to the next stage of the research process. |
11:00 |
Research Data Security (LT)
Finished
This course introduces students to some of the legal issues around academic research involving personal data, and walks them through securing their research by conceptualizing and then assessing possible risks, followed by examining different ways to reduce those risks. This is delivered in a practical and non-technical way although there are some terms to do with risk assessment which may be unfamiliar to them. For this reason there is a relevant glossary provided for each session. |
16:00 |
Ethics and the associated process of approval / review are an important component of any research project, not only practically enabling research to take place but also enabling researchers to consider the values underpinning their research. The aim of this course is to take both a practical and reflective approach to ethics. On a practical level, the course will focus on identifying the steps involved in seeking ethical approval or undertaking an ethical review. On a reflective level, the course will explore the values informing key ethical principles and concepts and how these may relate to individual’s research. |
17:30 |
Open Source Investigation for Academics is methodology course run by Cambridge’s Digital Verification Corps, in partnership with Cambridge’s Centre of Governance and Human Rights, Social Sciences Research Methods Programme and Cambridge Digital Humanities, as well as with the Citizen Evidence Lab at Amnesty International. NB. Places on this module are extremely limited, so please only make a booking if you are able to attend all of the sessions. |
Wednesday 31 January
09:00 |
Longitudinal Analysis
Finished
Longitudinal data analysis is a statistical method used to examine data collected from the same subjects or entities over multiple time points. This type of data analysis is particularly valuable for understanding how variables change over time and for investigating trends, patterns, and relationships within a dynamic context. For instance, how does children’s early home environment affect their future mathematical development? Longitudinal data analysis holds several advantages, such as (1) understanding individual-level trajectories, enabling a deeper understanding of how different subjects respond to interventions or external factors over time, (2) supporting stronger causal inference by tracking changes before and after an intervention and (3) accounting for heterogeneity since it recognises that not all subjects respond uniformly to changes over time. Over the course of this module, participants will learn how to work with longitudinal data. Through hands-on exercises and practical examples, participants will gain proficiency in data manipulation, visualisation, and advanced statistical techniques tailored specifically for longitudinal data. From understanding growth trajectories to uncovering causal relationships, this module will empower participants to navigate the complexities of longitudinal data with confidence. It is suitable for postgraduate students and researchers at any stages of their study and research. However, foundational Stata skills are required. |
10:00 |
Basic Quantitative Analysis (BQA-5)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
Basic Quantitative Analysis (BQA-6)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
|
14:00 |
Basic Quantitative Analysis (BQA-5)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
16:00 |
Basic Quantitative Analysis (BQA-6)
Finished
This module follows on from Foundations in Applied statistics, and will teach you the basics of common bivariate techniques (that is, techniques that examine the associations between two variables). The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to apply these techniques to the analysis of real data. Techniques to be covered include:
For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class. |
This module introduces focus group research as a qualitative research method. Attention is given to the key elements and methodological consideration of conducting focus group research. It also explores the process of conducting focus group research, where students are given the opportunity to design focus group questions, and to experience the role of researcher in the practical workshops. |