skip to navigation skip to content

Reset

Filter by

Course type

Show only:



Dates available




Places available




Theme


Filter search

Browse or search for courses


7 matching courses
Courses per page: 10 | 25 | 50 | 100


PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

This School aims to familiarise biomedical students and researchers with principles of Data Science. Focusing on utilising machine learning algorithms to handle biomedical data, it will cover: effects of experimental design, data readiness, pipeline implementations, machine learning in Python, and related statistics, as well as Gaussian Process models.

Providing practical experience in the implementation of machine learning methods relevant to biomedical applications, including Gaussian processes, we will illustrate best practices that should be adopted in order to enable reproducibility in any data science application.

This event is sponsored by Cambridge Centre for Data-Driven Discovery (C2D3).

The training room is located on the first floor and there is currently no wheelchair or level access available to this level.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Ensembl REST API workshop (ONLINE TRAINING) Wed 2 Sep 2020   09:30 [Places]

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The Ensembl project provides a comprehensive and integrated source of annotation of mainly vertebrate genome sequences.

This workshop is aimed at researchers and developers interested in exploring Ensembl beyond the website. The workshop covers how to use the Ensembl REST APIs, including understanding the major endpoints and how to write scripts to call them.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

One of the most important tasks of systems biology is to create explanatory and predictive models of complex biological systems. Availability of gene expression data in different conditions has paved the way for reconstructing direct or indirect regulatory connections between various genes and gene products. Most often, we are not interested in single interactions between gene products; instead, we try to reconstruct networks that provide insights into the investigated biological processes or the entire system as a whole.

This webinar will expand upon the concept of Gene Co-expression Networks to elucidate Weighted Gene Co-expression Network Analysis (WGCNA), and introduce the importance of visualising clustered gene expression profiles as single ‘Eigengenes’. It will describe the complete protocol for WGCNA analysis starting from normalised Gene Expression Datasets (Microarrays or RNA-Seq). This will be followed by a discussion on methods of extraction and analysis of consensus modules and Network motifs from Gene Co-Expression Networks and Transcriptional Regulatory Networks.

The webinar will be presented in the form of a lecture and tutorial with screenshots that enable listeners to emulate the protocols in R. Note that this is a webinar and not a coding exercise. Links to further reading and practice will be shared.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

One of the most important tasks of systems biology is to create explanatory and predictive models of complex biological systems. Availability of gene expression data in different conditions has paved the way for reconstructing direct or indirect regulatory connections between various genes and gene products. Most often, we are not interested in single interactions between gene products; instead, we try to reconstruct networks that provide insights into the investigated biological processes.

This webinar will introduce the importance and applications of Gene Expression Datasets (Microarrays and RNA-Seq), followed by methods of extraction and analysis of Co-Expression Networks and Transcriptional Regulatory Networks from these datasets. The webinar will focus on the pros and cons of Weighted and Unweighted Networks, citing examples to aid decisions about which networks to use and when.

The webinar will be presented in the form of a lecture and tutorial with screenshots that enable listeners to emulate the protocols in R. Note that this is a webinar and not a coding exercise. Links to further reading and practice will be shared.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

This event introduces participants to the KNIME Analytics Platform, an open source data science platform with a visual workflow editor, that can be used by users without prior programming experience or integrated with existing scripts written in R or Python.

These sessions are aimed towards anyone who has an interest in building data science workflows with different kinds of life science data. The sessions will cover how to aggregate data from different sources (e.g., files, databases, web services), how to calculate simple statistics (e.g., for data exploration), network mining (e.g., protein-protein interactions) and big data analytics (e.g., next-generation sequencing data).

The webinar will combine practical and taught content to demonstrate how users can use KNIME to design and utilise reproducible data science workflows, such as analytics tasks, and better explore and understand their data.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Using the Ensembl Genome Browser (ONLINE TRAINING) Tue 1 Sep 2020   09:30 [Places]

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The Ensembl Project provides a comprehensive and integrated source of annotation of, mainly vertebrate, genome sequences. This workshop offers a comprehensive practical introduction to the use of the Ensembl genome browser as well as essential background information.

This course will focus on the vertebrate genomes in Ensembl, however much of what will be covered is also applicable to the non-vertebrates (plants, bacteria, fungi, metazoa and protists) in Ensembl Genomes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.