skip to navigation skip to content

Bioinformatics Training

Bioinformatics course timetable

Show:

Tue 16 Oct – Thu 17 Jan 2019

Now Today

[ No events today ]

October 2018

Wed 17
Introduction to Unix shell new [Full] 09:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course offers an introduction to working with Linux. We will describe the Linux environment so that participants can start to utilize command-line tools and feel comfortable using a text-based way of interacting with a computer. We will take a problem-solving approach, drawing on types of tasks commonly encountered by Linux users when processing text files.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to Book or register Interest by linking here.

Thu 18
High Performance Computing: An Introduction [Places] 09:30 - 16:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

The course aims to give an introductory overview of High Performance Computing (HPC) in general, and of the facilities of the High Performance Computing Service (HPCS) available at the University of Cambridge.

Practical examples of using the HPCS clusters will be used throughout, although it is hoped that much of the content will have applicability to systems elsewhere.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Wed 24
An Introduction to Solving Biological Problems with R (1 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

R is a highly-regarded, free, software environment for statistical analysis, with many useful features that promote and facilitate reproducible research.

In this course, we give an introduction to the R environment and explain how it can be used to import, manipulate and analyse tabular data. After the course you should feel confident to start exploring your own dataset using the materials and references provided.

The course website providing links to the course materials is here.

Please note that although we will demonstrate how to perform statistical analysis in R, we will not cover the theory of statistical analysis in this course. Those seeking an in-depth explanation of how to perform and interpret statistical tests are advised to see the list of Related courses. Moreover, those with some programming experience in other languages (e.g. Python, Perl) might wish to attend the follow-on Data Analysis and Visualisation in R course.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 25
An Introduction to Solving Biological Problems with R (2 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

R is a highly-regarded, free, software environment for statistical analysis, with many useful features that promote and facilitate reproducible research.

In this course, we give an introduction to the R environment and explain how it can be used to import, manipulate and analyse tabular data. After the course you should feel confident to start exploring your own dataset using the materials and references provided.

The course website providing links to the course materials is here.

Please note that although we will demonstrate how to perform statistical analysis in R, we will not cover the theory of statistical analysis in this course. Those seeking an in-depth explanation of how to perform and interpret statistical tests are advised to see the list of Related courses. Moreover, those with some programming experience in other languages (e.g. Python, Perl) might wish to attend the follow-on Data Analysis and Visualisation in R course.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Mon 29
CRUK: Experimental Design [Places] 10:00 - 16:30 Clinical School, Seminar Room 11

Modern technologies are able to deliver an unprecedented amount of data rapidly. However, without due care and attention early in the experimental process, such data are meaningless if they cannot adequately answer the intended research question. This course is aimed at those planning high-throughput experiments and highlights the kinds of questions they should be asking themselves. The course consists of a lecture and small-group discussions led by a member of the Genomics or Bioinformatics Cores.

This event is part of a series of training courses organized in collaboration with the Bioinformatics Core Facility at CRUK Cambridge Institute.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 30
Data Science in Python (1 of 2) [Full] 09:30 - 16:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course covers concepts and strategies for working more effectively with Python with the aim of writing reusable code, using function and libraries. Participants will acquire a working knowledge of key concepts which are prerequisites for advanced programming in Python e.g. writing modules and classes.

Note: this course is the continuation of the Introduction to Solving Biological Problems with Python; participants are expected to have attended the introductory Python course and/or have acquired some working knowledge of Python. This course is also open to Python beginners who are already fluent in other programming languages as this will help them to quickly get started in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Wed 31
Data Science in Python (2 of 2) [Full] 09:30 - 16:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course covers concepts and strategies for working more effectively with Python with the aim of writing reusable code, using function and libraries. Participants will acquire a working knowledge of key concepts which are prerequisites for advanced programming in Python e.g. writing modules and classes.

Note: this course is the continuation of the Introduction to Solving Biological Problems with Python; participants are expected to have attended the introductory Python course and/or have acquired some working knowledge of Python. This course is also open to Python beginners who are already fluent in other programming languages as this will help them to quickly get started in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

November 2018

Mon 12
Using the Ensembl Genome Browser [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

The Ensembl Project provides a comprehensive and integrated source of annotation of, mainly vertebrate, genome sequences. This workshop offers a comprehensive practical introduction to the use of the Ensembl genome browser as well as essential background information.

This course will focus on the vertebrate genomes in Ensembl, however much of what will be covered is also applicable to the non-vertebrates (plants, bacteria, fungi, metazoa and protists) in Ensembl Genomes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 14
Introduction to Scientific Figure Design [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course provides a practical guide to producing figures for use in reports and publications.

It is a wide ranging course which looks at how to design figures to clearly and fairly represent your data, the practical aspects of graph creation, the allowable manipulation of bitmap images and compositing and editing of final figures.

The course will use a number of different open source software packages and is illustrated with a number of example figures adapted from common analysis tools.

Further information and access to the course materials is here.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 21
Ontologies and ontology-based data analysis [Places] 10:00 - 15:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

Ontologies have long provided a core foundation in the organization of biomedical entities, their attributes, and their relationships. With over 500 biomedical ontologies currently available there are a number of new and exciting opportunities emerging in using ontologies for large scale data sharing and data analysis.

This tutorial will help you understand what ontologies are and how they are being used in computational biology and bioinformatics. It will include hands-on examples and exercises and an introduction to Onto2Vec and OPA2Vec, two methods that can be used to learn semantic similarity measures in a data- and application-driven way.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Thu 29
An Introduction to Solving Biological Problems with Python (1 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

Fri 30
An Introduction to Solving Biological Problems with Python (2 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

December 2018

Mon 10
Using CellProfiler and CellProfiler Analyst to analyse biological images (1 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

Microscopy experiments have proven to be a powerful means of generating information-rich data for biological applications. From small-scale microscopy experiments to time-lapse movies and high-throughput screens, automatic image analysis is more objective and quantitative and less tedious than visual inspection.

This course will introduce users to the free open-source image analysis program CellProfiler and its companion data exploration program CellProfiler Analyst. We will show how CellProfiler can be used to analyse a variety of types of imaging experiments. We will also briefly discuss the basic principles of supervised machine learning with CellProfiler Analyst in order to score complex and subtle phenotypes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 11
Using CellProfiler and CellProfiler Analyst to analyse biological images (2 of 2) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

Microscopy experiments have proven to be a powerful means of generating information-rich data for biological applications. From small-scale microscopy experiments to time-lapse movies and high-throughput screens, automatic image analysis is more objective and quantitative and less tedious than visual inspection.

This course will introduce users to the free open-source image analysis program CellProfiler and its companion data exploration program CellProfiler Analyst. We will show how CellProfiler can be used to analyse a variety of types of imaging experiments. We will also briefly discuss the basic principles of supervised machine learning with CellProfiler Analyst in order to score complex and subtle phenotypes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Fri 14
Analysis of DNA Methylation using Sequencing [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course will cover all aspects of the analysis of DNA methylation using sequencing, including primary analysis, mapping and quality control of BS-Seq data, common pitfalls and complications.

It will also include exploratory analysis of methylation, looking at different methods of quantitation, and a variety of ways of looking more widely at the distribution of methylation over the genome. Finally the course will look at statistical methods to predict differential methylation.

The course will be comprised of a mixture of theoretical lectures and practicals covering a range of different software packages.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book by linking here.

January 2019

Wed 9
Statistics for Biologists in R (1 of 4) [Full] 13:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences using the R software package.

In this course we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to multiple linear regression. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 10
Statistics for Biologists in R (2 of 4) [Full] 13:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences using the R software package.

In this course we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to multiple linear regression. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 16
Statistics for Biologists in R (3 of 4) [Full] 13:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences using the R software package.

In this course we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to multiple linear regression. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 17
Statistics for Biologists in R (4 of 4) [Full] 13:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building, Downing Site

This course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences using the R software package.

In this course we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to multiple linear regression. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.