Bioinformatics course timetable
March 2024
Mon 11 |
The vast majority of data produced fits the criteria of labelled data (with either continuous of categorical labels); the machine learning task of discriminating classes (for categorical outputs) or predicting future values (continuous outputs) will be discussed in detail, focusing both on classical methods – k nearest neighbours, decision tree based methods and support vector machine – and on the importance and discriminative power of features. The module will provide support in generating models (using R as programming environment), critically assessing the optimisation of hyperparameters and evaluating the usefulness of the model with respect to the initial question. The examples presented throughout stem from biological examples, yet the skills and critical assessment of outputs are transferrable.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Tue 12 |
The vast majority of data produced fits the criteria of labelled data (with either continuous of categorical labels); the machine learning task of discriminating classes (for categorical outputs) or predicting future values (continuous outputs) will be discussed in detail, focusing both on classical methods – k nearest neighbours, decision tree based methods and support vector machine – and on the importance and discriminative power of features. The module will provide support in generating models (using R as programming environment), critically assessing the optimisation of hyperparameters and evaluating the usefulness of the model with respect to the initial question. The examples presented throughout stem from biological examples, yet the skills and critical assessment of outputs are transferrable.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Wed 13 |
The Unix shell (command line) is a powerful and essential tool for modern researchers, in particular those working in computational disciplines such as bioinformatics and large-scale data analysis. In this course we will explore the basic structure of the Unix operating system and how we can interact with it using a basic set of commands. You will learn how to navigate the filesystem, manipulate text-based data and combine multiple commands to quickly extract information from large data files. You will also learn how to write scripts and use programmatic techniques to automate task repetition.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Thu 14 |
The Unix shell (command line) is a powerful and essential tool for modern researchers, in particular those working in computational disciplines such as bioinformatics and large-scale data analysis. In this course we will explore the basic structure of the Unix operating system and how we can interact with it using a basic set of commands. You will learn how to navigate the filesystem, manipulate text-based data and combine multiple commands to quickly extract information from large data files. You will also learn how to write scripts and use programmatic techniques to automate task repetition.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Fri 15 |
In this course you will acquire practical skills in RNA-seq data analysis. You will learn about quality control, alignment, and quantification of gene expression against a reference transcriptome. Additionally, you will learn to conduct downstream analysis in R, exploring techniques like PCA and clustering for exploratory analysis. The course also covers differential expression analysis using the DESeq2 R/Bioconductor package. Furthermore, the course covers how to generate visualisations like heatmaps and performing gene set testing to link differential genes with established biological functions or pathways.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Mon 18 |
In this course you will acquire practical skills in RNA-seq data analysis. You will learn about quality control, alignment, and quantification of gene expression against a reference transcriptome. Additionally, you will learn to conduct downstream analysis in R, exploring techniques like PCA and clustering for exploratory analysis. The course also covers differential expression analysis using the DESeq2 R/Bioconductor package. Furthermore, the course covers how to generate visualisations like heatmaps and performing gene set testing to link differential genes with established biological functions or pathways.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Tue 19 |
In this course you will acquire practical skills in RNA-seq data analysis. You will learn about quality control, alignment, and quantification of gene expression against a reference transcriptome. Additionally, you will learn to conduct downstream analysis in R, exploring techniques like PCA and clustering for exploratory analysis. The course also covers differential expression analysis using the DESeq2 R/Bioconductor package. Furthermore, the course covers how to generate visualisations like heatmaps and performing gene set testing to link differential genes with established biological functions or pathways.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Wed 20 |
Have you heard about High Performance Computing, but are not sure what it is or whether it is relevant for your work? Would you like to use a HPC, but are not sure where to start? Are you using your personal computer to run computationally demanding tasks, which take long and slow down your work? Do you need to use software that runs on Linux, but don't have access to a Linux computer? If any of these questions apply to you, then this course might be for you! Knowing how to work on a High Performance Computing system is an essential skill for applications such as bioinformatics, big-data analysis, image processing, machine learning, parallelising tasks, and other high-throughput applications. In this course we will cover the basics of High Performance Computing, what it is and how you can use it in practice. This is a hands-on workshop, which should be accessible to researchers from a range of backgrounds and offering several opportunities to practice the skills we learn along the way. As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Thu 21 |
Have you heard about High Performance Computing, but are not sure what it is or whether it is relevant for your work? Would you like to use a HPC, but are not sure where to start? Are you using your personal computer to run computationally demanding tasks, which take long and slow down your work? Do you need to use software that runs on Linux, but don't have access to a Linux computer? If any of these questions apply to you, then this course might be for you! Knowing how to work on a High Performance Computing system is an essential skill for applications such as bioinformatics, big-data analysis, image processing, machine learning, parallelising tasks, and other high-throughput applications. In this course we will cover the basics of High Performance Computing, what it is and how you can use it in practice. This is a hands-on workshop, which should be accessible to researchers from a range of backgrounds and offering several opportunities to practice the skills we learn along the way. As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Fri 22 |
Have you heard about High Performance Computing, but are not sure what it is or whether it is relevant for your work? Would you like to use a HPC, but are not sure where to start? Are you using your personal computer to run computationally demanding tasks, which take long and slow down your work? Do you need to use software that runs on Linux, but don't have access to a Linux computer? If any of these questions apply to you, then this course might be for you! Knowing how to work on a High Performance Computing system is an essential skill for applications such as bioinformatics, big-data analysis, image processing, machine learning, parallelising tasks, and other high-throughput applications. In this course we will cover the basics of High Performance Computing, what it is and how you can use it in practice. This is a hands-on workshop, which should be accessible to researchers from a range of backgrounds and offering several opportunities to practice the skills we learn along the way. As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Mon 25 |
R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Tue 26 |
R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
April 2024
Mon 15 |
This week-long course is aimed at people with little or no experience using statistical analyses in research. It introduces participants to core concepts in statistics and experimental design, aimed at ensuring that the resulting data is able to address the research question using appropriate statistical methods. The interactive course gives participants a hands-on, applied foundation in statistical data analysis and experimental design. Group exercises and discussions are combined with short lectures that introduce key theoretical concepts. Computational methods are used throughout the course, using the R programming language. Formative assessment exercises allow participants to test their understanding throughout the course and encourage questions and critical thinking. By the end of the course participants will be able to critically evaluate and design effective research questions, linking experimental design concepts to subsequent statistical analyses. It will allow participants to make informed decisions on which statistical tests are most appropriate to their research questions. The course will provide a solid grounding for further development of applied statistical competencies.
If you do not have a University of Cambridge Raven account please book or register your interest here. |
|
Tue 16 |
This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
|
This week-long course is aimed at people with little or no experience using statistical analyses in research. It introduces participants to core concepts in statistics and experimental design, aimed at ensuring that the resulting data is able to address the research question using appropriate statistical methods. The interactive course gives participants a hands-on, applied foundation in statistical data analysis and experimental design. Group exercises and discussions are combined with short lectures that introduce key theoretical concepts. Computational methods are used throughout the course, using the R programming language. Formative assessment exercises allow participants to test their understanding throughout the course and encourage questions and critical thinking. By the end of the course participants will be able to critically evaluate and design effective research questions, linking experimental design concepts to subsequent statistical analyses. It will allow participants to make informed decisions on which statistical tests are most appropriate to their research questions. The course will provide a solid grounding for further development of applied statistical competencies.
If you do not have a University of Cambridge Raven account please book or register your interest here. |
||
Wed 17 |
This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
|
This week-long course is aimed at people with little or no experience using statistical analyses in research. It introduces participants to core concepts in statistics and experimental design, aimed at ensuring that the resulting data is able to address the research question using appropriate statistical methods. The interactive course gives participants a hands-on, applied foundation in statistical data analysis and experimental design. Group exercises and discussions are combined with short lectures that introduce key theoretical concepts. Computational methods are used throughout the course, using the R programming language. Formative assessment exercises allow participants to test their understanding throughout the course and encourage questions and critical thinking. By the end of the course participants will be able to critically evaluate and design effective research questions, linking experimental design concepts to subsequent statistical analyses. It will allow participants to make informed decisions on which statistical tests are most appropriate to their research questions. The course will provide a solid grounding for further development of applied statistical competencies.
If you do not have a University of Cambridge Raven account please book or register your interest here. |
||
Thu 18 |
This week-long course is aimed at people with little or no experience using statistical analyses in research. It introduces participants to core concepts in statistics and experimental design, aimed at ensuring that the resulting data is able to address the research question using appropriate statistical methods. The interactive course gives participants a hands-on, applied foundation in statistical data analysis and experimental design. Group exercises and discussions are combined with short lectures that introduce key theoretical concepts. Computational methods are used throughout the course, using the R programming language. Formative assessment exercises allow participants to test their understanding throughout the course and encourage questions and critical thinking. By the end of the course participants will be able to critically evaluate and design effective research questions, linking experimental design concepts to subsequent statistical analyses. It will allow participants to make informed decisions on which statistical tests are most appropriate to their research questions. The course will provide a solid grounding for further development of applied statistical competencies.
If you do not have a University of Cambridge Raven account please book or register your interest here. |
|
Fri 19 |
This week-long course is aimed at people with little or no experience using statistical analyses in research. It introduces participants to core concepts in statistics and experimental design, aimed at ensuring that the resulting data is able to address the research question using appropriate statistical methods. The interactive course gives participants a hands-on, applied foundation in statistical data analysis and experimental design. Group exercises and discussions are combined with short lectures that introduce key theoretical concepts. Computational methods are used throughout the course, using the R programming language. Formative assessment exercises allow participants to test their understanding throughout the course and encourage questions and critical thinking. By the end of the course participants will be able to critically evaluate and design effective research questions, linking experimental design concepts to subsequent statistical analyses. It will allow participants to make informed decisions on which statistical tests are most appropriate to their research questions. The course will provide a solid grounding for further development of applied statistical competencies.
If you do not have a University of Cambridge Raven account please book or register your interest here. |
|
Tue 23 |
This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
|
Wed 24 |
This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
|
Mon 29 |
R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
|
Tue 30 |
R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
May 2024
Wed 1 |
This course introduces concepts about reproducibility that can be used when you are programming in R. We will explore how to create notebooks - a way to integrate your R analyses into reports using Rmarkdown. The course also introduces the concept of version control. We will learn how to create a repository on GitHub and how to work together on the same project collaboratively without creating conflicting versions of files.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|
Thu 2 |
This course introduces concepts about reproducibility that can be used when you are programming in R. We will explore how to create notebooks - a way to integrate your R analyses into reports using Rmarkdown. The course also introduces the concept of version control. We will learn how to create a repository on GitHub and how to work together on the same project collaboratively without creating conflicting versions of files.
If you do not have a University of Cambridge Raven account please book or register your interest here. Additional information
|