skip to navigation skip to content

Bioinformatics Training

Bioinformatics course timetable

Show:

Wed 27 May – Wed 2 Sep

Now Today

[ No events on Wed 27 May ]

June 2020

Mon 1
Data Science in Python (ONLINE LIVE TRAINING) (1 of 2) Finished 09:30 - 16:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course covers concepts and strategies for working more effectively with Python with the aim of writing reusable code, using function and libraries. Participants will acquire a working knowledge of key concepts which are prerequisites for advanced programming in Python e.g. writing modules and classes.

Note: this course is the continuation of the Introduction to Solving Biological Problems with Python; participants are expected to have attended the introductory Python course and/or have acquired some working knowledge of Python. This course is also open to Python beginners who are already fluent in other programming languages as this will help them to quickly get started in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 2
Data Science in Python (ONLINE LIVE TRAINING) (2 of 2) Finished 09:30 - 16:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course covers concepts and strategies for working more effectively with Python with the aim of writing reusable code, using function and libraries. Participants will acquire a working knowledge of key concepts which are prerequisites for advanced programming in Python e.g. writing modules and classes.

Note: this course is the continuation of the Introduction to Solving Biological Problems with Python; participants are expected to have attended the introductory Python course and/or have acquired some working knowledge of Python. This course is also open to Python beginners who are already fluent in other programming languages as this will help them to quickly get started in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Mon 22
Introduction to R for Biologists (ONLINE LIVE TRAINING) (1 of 2) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors to assist you with instant and personalised feedback and to help you to run/execute the scripts which we will be using during the course. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 23
Introduction to R for Biologists (ONLINE LIVE TRAINING) (2 of 2) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors to assist you with instant and personalised feedback and to help you to run/execute the scripts which we will be using during the course. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 24
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (1 of 3) Finished 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 25
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (2 of 3) Finished 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Fri 26
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (3 of 3) Finished 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Mon 29
An Introduction to MATLAB for biologists (ONLINE LIVE TRAINING) (1 of 2) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course aims to give you an introduction to the basics of Matlab. During the two day course we will use a practical based approach to give you the confidence to start using Matlab in your own work. In particular we will show you how to write your own scripts and functions and how to use pre-written functions. We will also explore the many ways in which help is available to Matlab users. In addition we will cover basic computer programming in Matlab to enable you to write more efficient scripts.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to Book or register Interest by linking here.

Tue 30
An Introduction to MATLAB for biologists (ONLINE LIVE TRAINING) (2 of 2) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course aims to give you an introduction to the basics of Matlab. During the two day course we will use a practical based approach to give you the confidence to start using Matlab in your own work. In particular we will show you how to write your own scripts and functions and how to use pre-written functions. We will also explore the many ways in which help is available to Matlab users. In addition we will cover basic computer programming in Matlab to enable you to write more efficient scripts.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to Book or register Interest by linking here.

July 2020

Wed 1
Analysis of bulk RNA-seq data (ONLINE LIVE TRAINING) (1 of 3) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The aim of this course is to familiarize the participants with the primary analysis of RNA-seq data.

This course starts with a brief introduction to RNA-seq and discusses quality control issues. Next, we will present the alignment step, quantification of expression and differential expression analysis. For downstream analysis we will focus on tools available through the Bioconductor project for manipulating and analysing bulk RNA-seq.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 2
Analysis of bulk RNA-seq data (ONLINE LIVE TRAINING) (2 of 3) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The aim of this course is to familiarize the participants with the primary analysis of RNA-seq data.

This course starts with a brief introduction to RNA-seq and discusses quality control issues. Next, we will present the alignment step, quantification of expression and differential expression analysis. For downstream analysis we will focus on tools available through the Bioconductor project for manipulating and analysing bulk RNA-seq.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Fri 3
Analysis of bulk RNA-seq data (ONLINE LIVE TRAINING) (3 of 3) Finished 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The aim of this course is to familiarize the participants with the primary analysis of RNA-seq data.

This course starts with a brief introduction to RNA-seq and discusses quality control issues. Next, we will present the alignment step, quantification of expression and differential expression analysis. For downstream analysis we will focus on tools available through the Bioconductor project for manipulating and analysing bulk RNA-seq.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 7
Open Targets: Integrating genetics, genomics and drug information for translational research and drug discovery (Webinar) Finished 14:00 - 15:30 Bioinformatics Training Facility - Webinar (Time Zone = BST)

Open Targets is a public-private partnership to use human genetics, genomic data and drug information for systematic identification and prioritisation of therapeutic targets. This module introduces the Open Targets partnership, its underlying projects and the bioinformatics resources for researchers studying associations of human genes with diseases.

In this 90 minute long webinar, Denise Carvalho-Silva, will focus on Open Targets Platform and Open Targets Genetics, open source tools of integrated genetic, genomic and chemical data for target-disease associations.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Fri 10
An Introduction to Biological Networks & their Visualization (Webinar) Finished 10:00 - 11:30 Bioinformatics Training Facility - Webinar (Time Zone = BST)

This webinar is an Introduction to Biological Networks, their types, and applications. It will include two of the most commonly used open source Network Visualisation Platforms (R-igraph and Cytoscape) with step-wise protocols for creating and visualising your own data as a network. It will present some of the major layout algorithms, visual styles and tips for effective visualisation, with examples from biology revealing how these can improve analysis and provide insights.

The webinar will be presented in the form of a lecture as well as a tutorial with step-wise screenshots that enable listeners to emulate simple Network creation and analysis. Please note that this is a webinar and not a coding exercise. Links to publicly available resources and hands-on tutorials will be shared with you for further reading and practice.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Mon 13
An Introduction to Solving Biological Problems with Python (ONLINE LIVE TRAINING) (1 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Tue 14
An Introduction to Solving Biological Problems with Python (ONLINE LIVE TRAINING) (2 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive participants will be able to write simple Python programs and customize more complex code to fit their needs.

Course materials are available here.

Please note that the content of this course has recently been updated. This course now mostly focuses on core concepts including Python syntax, data structures and reading/writing files. Concepts and strategies for working more effectively with Python are now the focus of a new 2-days course, Data Science in Python.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 15
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (1 of 3) [Full] 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 16
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (2 of 3) [Full] 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Fri 17
An Introduction to Machine Learning (ONLINE LIVE TRAINING) (3 of 3) [Full] 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

Machine learning gives computers the ability to learn without being explicitly programmed. It encompasses a broad range of approaches to data analysis with applicability across the biological sciences. Lectures will introduce commonly used algorithms and provide insight into their theoretical underpinnings. In the practicals students will apply these algorithms to real biological data-sets using the R language and environment.

Please be aware that the course syllabus is currently being updated following feedback from the last event; therefore the agenda below will be subjected to changes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 29
KNIME: Practical introduction to KNIME Analytics platform and its application in bioinformatics (Webinar) (1 of 2) [Full] 14:00 - 16:00 Bioinformatics Training Facility - Webinar (Time Zone = BST)

This event introduces participants to the KNIME Analytics Platform, an open source data science platform with a visual workflow editor, that can be used by users without prior programming experience or integrated with existing scripts written in R or Python.

These sessions are aimed towards anyone who has an interest in building data science workflows with different kinds of life science data. The sessions will cover how to aggregate data from different sources (e.g., files, databases, web services), how to calculate simple statistics (e.g., for data exploration), network mining (e.g., protein-protein interactions) and big data analytics (e.g., next-generation sequencing data).

The webinar will combine practical and taught content to demonstrate how users can use KNIME to design and utilise reproducible data science workflows, such as analytics tasks, and better explore and understand their data.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Thu 30
Inferring Co-Expressing Genes and Regulatory Networks from RNA-Seq Data (Webinar) [Places] 11:00 - 13:00 Bioinformatics Training Facility - Webinar (Time Zone = BST)

One of the most important tasks of systems biology is to create explanatory and predictive models of complex biological systems. Availability of gene expression data in different conditions has paved the way for reconstructing direct or indirect regulatory connections between various genes and gene products. Most often, we are not interested in single interactions between gene products; instead, we try to reconstruct networks that provide insights into the investigated biological processes.

This webinar will introduce the importance and applications of Gene Expression Datasets (Microarrays and RNA-Seq), followed by methods of extraction and analysis of Co-Expression Networks and Transcriptional Regulatory Networks from these datasets. The webinar will focus on the pros and cons of Weighted and Unweighted Networks, citing examples to aid decisions about which networks to use and when.

The webinar will be presented in the form of a lecture and tutorial with screenshots that enable listeners to emulate the protocols in R. Note that this is a webinar and not a coding exercise. Links to further reading and practice will be shared.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

KNIME: Practical introduction to KNIME Analytics platform and its application in bioinformatics (Webinar) (2 of 2) [Full] 14:00 - 16:00 Bioinformatics Training Facility - Webinar (Time Zone = BST)

This event introduces participants to the KNIME Analytics Platform, an open source data science platform with a visual workflow editor, that can be used by users without prior programming experience or integrated with existing scripts written in R or Python.

These sessions are aimed towards anyone who has an interest in building data science workflows with different kinds of life science data. The sessions will cover how to aggregate data from different sources (e.g., files, databases, web services), how to calculate simple statistics (e.g., for data exploration), network mining (e.g., protein-protein interactions) and big data analytics (e.g., next-generation sequencing data).

The webinar will combine practical and taught content to demonstrate how users can use KNIME to design and utilise reproducible data science workflows, such as analytics tasks, and better explore and understand their data.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

August 2020

Mon 10
Identification of Eigen-genes, consensus modules and Network Motifs in co-expression (or other biological) networks. (Webinar) [Places] 11:00 - 13:00 Bioinformatics Training Facility - Webinar (Time Zone = BST)

One of the most important tasks of systems biology is to create explanatory and predictive models of complex biological systems. Availability of gene expression data in different conditions has paved the way for reconstructing direct or indirect regulatory connections between various genes and gene products. Most often, we are not interested in single interactions between gene products; instead, we try to reconstruct networks that provide insights into the investigated biological processes or the entire system as a whole.

This webinar will expand upon the concept of Gene Co-expression Networks to elucidate Weighted Gene Co-expression Network Analysis (WGCNA), and introduce the importance of visualising clustered gene expression profiles as single ‘Eigengenes’. It will describe the complete protocol for WGCNA analysis starting from normalised Gene Expression Datasets (Microarrays or RNA-Seq). This will be followed by a discussion on methods of extraction and analysis of consensus modules and Network motifs from Gene Co-Expression Networks and Transcriptional Regulatory Networks.

The webinar will be presented in the form of a lecture and tutorial with screenshots that enable listeners to emulate the protocols in R. Note that this is a webinar and not a coding exercise. Links to further reading and practice will be shared.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

September 2020

Tue 1
Using the Ensembl Genome Browser (ONLINE TRAINING) [Places] 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The Ensembl Project provides a comprehensive and integrated source of annotation of, mainly vertebrate, genome sequences. This workshop offers a comprehensive practical introduction to the use of the Ensembl genome browser as well as essential background information.

This course will focus on the vertebrate genomes in Ensembl, however much of what will be covered is also applicable to the non-vertebrates (plants, bacteria, fungi, metazoa and protists) in Ensembl Genomes.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.

Wed 2
Ensembl REST API workshop (ONLINE TRAINING) [Places] 09:30 - 15:30 Bioinformatics Training Facility - Online LIVE Training (Time Zone = BST)

PLEASE NOTE The Bioinformatics Team are presently teaching as many courses live online, with tutors available to help you work through the course material on a personal copy of the course environment. We aim to simulate the classroom experience as closely as possible, with opportunities for one-to-one discussion with tutors and a focus on interactivity throughout.

The Ensembl project provides a comprehensive and integrated source of annotation of mainly vertebrate genome sequences.

This workshop is aimed at researchers and developers interested in exploring Ensembl beyond the website. The workshop covers how to use the Ensembl REST APIs, including understanding the major endpoints and how to write scripts to call them.

Please note that if you are not eligible for a University of Cambridge Raven account you will need to book or register your interest by linking here.