skip to navigation skip to content
- Select training provider - (Social Sciences Research Methods Programme)

Graduate Lecture Series 2019-2020

7 matching courses
Courses per page: 10 | 25 | 50 | 100


An applied introduction to probabilistic modelling, machine learning and artificial intelligence-based approaches for students with little or no background in theory and modelling. The course will be taught through a series of case studies from the current literature in which modelling approaches have been applied to large datasets from chemistry and biochemistry. Data and code will be made available to students and discussed in class. Students will become familiar with python based tools that implement the models though practical sessions and group based assignments.

To see a list of all upcoming Physical Chemistry Seminars please visit their webpage

You can also subscribe to these talks and download them to your calendar from the Talks webpage

To see a list of all upcoming Biological Chemistry Seminars please visit their webpage

You can also subscribe to these talks and download them to your calendar from the Talks webpage

To see a list of all upcoming Materials Chemistry Seminars please visit their webpage

You can also subscribe to these talks and download them to your calendar from the Talks webpage

To see a list of all upcoming Synthetic Chemistry Seminars please visit their webpage

You can also subscribe to these talks and download them to your calendar from the Talks webpage

This course will focus on recent progress in the application of kernel-based methods, Random Forests and Deep Neural Networks to modelling in chemistry. The material will build on the content of the core Informatics course and introduce new descriptors, advanced modelling techniques and example applications drawn from the current literature. Lectures will be interactive, with students working through computational exercises during class sessions.

This course will introduce students to the central question of how to encode molecules and molecular properties in a computational model. Building on the compulsory informatics course (see previous table entry), it will focus on reactivity parameterisation and prediction. The basics of DFT calculations will be introduced, together with how DFT can be used to model reactions (including flaws, assumptions, drawbacks etc). Lecture based format will be complemented by practical sessions in setting up different DFT-based calculations.