skip to navigation skip to content

Social Sciences Research Methods Centre course timetable

Show:

Thu 14 Sep – Mon 30 Oct

Now Today

[ No events on Thu 14 Sep ]

Wednesday 4 October

16:00
SSRMC Student Induction Lecture Finished 16:00 - 17:00 Lady Mitchell Hall

This event details how the SSRMC works, more about the modules we offer, and everything you need to know about making a booking.

NB. ALL STUDENTS WISHING TO TAKE SSRMC COURSES THIS YEAR ARE EXPECTED TO ATTEND THIS INDUCTION SESSION

Monday 9 October

10:00
Practical introduction to MATLAB Programming (1 of 4) Finished 10:00 - 12:00 8 Mill Lane, Lecture Room 1

This module is shared with Psychology. Students from the Department of Psychology MUST book places on this course via the Department; any bookings made by Psychology students via the SSRMC portal will be cancelled.

The course focuses on practical hands-on variable handling and programming implementation using rather than on theory. This course is intended for those who have never programmed before, including those who only call/run Matlab scripts but are not familiar with how code works and how matrices are handled in Matlab. (Note that calling a couple of scripts is not 'real' programming.)

MATLAB (C) is a powerful scientific programming environment optimal for data analysis and engineering solutions. More information on the programme and its uses can be found here: https://www.mathworks.com/products/matlab.html

More information on the course can be found, here: http://www.psychol.cam.ac.uk/grads/grads/pg-prog/programming#section-0

14:00
Practical introduction to MATLAB Programming (2 of 4) Finished 14:00 - 16:00 Nick Mackintosh Seminar Room, Department of Psychology

This module is shared with Psychology. Students from the Department of Psychology MUST book places on this course via the Department; any bookings made by Psychology students via the SSRMC portal will be cancelled.

The course focuses on practical hands-on variable handling and programming implementation using rather than on theory. This course is intended for those who have never programmed before, including those who only call/run Matlab scripts but are not familiar with how code works and how matrices are handled in Matlab. (Note that calling a couple of scripts is not 'real' programming.)

MATLAB (C) is a powerful scientific programming environment optimal for data analysis and engineering solutions. More information on the programme and its uses can be found here: https://www.mathworks.com/products/matlab.html

More information on the course can be found, here: http://www.psychol.cam.ac.uk/grads/grads/pg-prog/programming#section-0

Tuesday 10 October

10:00
Practical introduction to MATLAB Programming (3 of 4) Finished 10:00 - 12:00 New Museums Site, Hopkinson Lecture Theatre

This module is shared with Psychology. Students from the Department of Psychology MUST book places on this course via the Department; any bookings made by Psychology students via the SSRMC portal will be cancelled.

The course focuses on practical hands-on variable handling and programming implementation using rather than on theory. This course is intended for those who have never programmed before, including those who only call/run Matlab scripts but are not familiar with how code works and how matrices are handled in Matlab. (Note that calling a couple of scripts is not 'real' programming.)

MATLAB (C) is a powerful scientific programming environment optimal for data analysis and engineering solutions. More information on the programme and its uses can be found here: https://www.mathworks.com/products/matlab.html

More information on the course can be found, here: http://www.psychol.cam.ac.uk/grads/grads/pg-prog/programming#section-0

14:00
Practical introduction to MATLAB Programming (4 of 4) Finished 14:00 - 16:00 Nick Mackintosh Seminar Room, Department of Psychology

This module is shared with Psychology. Students from the Department of Psychology MUST book places on this course via the Department; any bookings made by Psychology students via the SSRMC portal will be cancelled.

The course focuses on practical hands-on variable handling and programming implementation using rather than on theory. This course is intended for those who have never programmed before, including those who only call/run Matlab scripts but are not familiar with how code works and how matrices are handled in Matlab. (Note that calling a couple of scripts is not 'real' programming.)

MATLAB (C) is a powerful scientific programming environment optimal for data analysis and engineering solutions. More information on the programme and its uses can be found here: https://www.mathworks.com/products/matlab.html

More information on the course can be found, here: http://www.psychol.cam.ac.uk/grads/grads/pg-prog/programming#section-0

16:00
Comparative Historical Methods (1 of 4) In progress 16:00 - 17:30 8 Mill Lane, Lecture Room 6

These four sessions will introduce students to comparative historical research methods, emphasizing their qualitative dimensions. In the first session, we will analyze some contemporary classics within this genre. In the second and third sessions, we will review and distinguish among a variety of intellectual justifications for this genre as a methodology. In the final session, we will focus on a "state of the art" defence of qualitative and comparative-historical research, both in theory and practice.

Aims:

  • To introduce students to the qualitative dimension of comparative historical research methods
  • To analyse some contemporary classics within this genre
  • To review and distinguish among the variety of intellectual justifications for this genre as a methodology
  • To focus on a 'state-of-the-art' defence of qualitative and comparative-historical research in theory and practice

Topics:

  • Session 1: Classics
  • Session 2: Justifications I
  • Session 3: Justifications II
  • Session 4: State of the Art

Wednesday 11 October

16:00
Foundations of Qualitative Methods: Introduction and Overview (1 of 2) Finished 16:00 - 17:30 8 Mill Lane, Lecture Room 4

This course will introduce students to the general philosophical debates concerning scientific methodology, assessing their ramifications for the conduct of qualitative social research. It will enable students to critically evaluate major programmes in the philosophy of sciences, considering whether there are important analytic differences between the social and natural sciences; and whether qualitative methods themselves comprise a unified approach to the study of social reality.

Topics:

  • Session 1: Epistemological Foundations of Qualitative Social Research Part I
  • Session 2: Epistemological Foundations of Qualitative Social Research Part II

Monday 16 October

12:30
Research Ethics (Michaelmas) Finished 12:30 - 15:30 Institute of Criminology, Room B3

Ethics is becoming an increasingly important issue for all researchers and the aim of this session is to demonstrate the practical value of thinking seriously and systematically about what constitutes ethical conduct in social science research. The session will involve a lecture component and some small-group work.

Aims:
To allow students to distinguish between values, moral and ethical issues, encourage students to think about problems and dilemmas in conducting research, help students to gain an overview of ethical relationships, enable students to know when to ask for help, and prepare students in terms of defence of possible criticisms of their own research.

Topics:

  • What do we mean by ethics?
  • National and international policy frameworks
  • Ethics and risk
  • Ethics across disciplinary boundaries
  • Dealing with ethical dilemmas
  • The processes of applying for ethics approval within the University of Cambridge

Tuesday 17 October

16:00
Comparative Historical Methods (2 of 4) In progress 16:00 - 17:30 8 Mill Lane, Lecture Room 6

These four sessions will introduce students to comparative historical research methods, emphasizing their qualitative dimensions. In the first session, we will analyze some contemporary classics within this genre. In the second and third sessions, we will review and distinguish among a variety of intellectual justifications for this genre as a methodology. In the final session, we will focus on a "state of the art" defence of qualitative and comparative-historical research, both in theory and practice.

Aims:

  • To introduce students to the qualitative dimension of comparative historical research methods
  • To analyse some contemporary classics within this genre
  • To review and distinguish among the variety of intellectual justifications for this genre as a methodology
  • To focus on a 'state-of-the-art' defence of qualitative and comparative-historical research in theory and practice

Topics:

  • Session 1: Classics
  • Session 2: Justifications I
  • Session 3: Justifications II
  • Session 4: State of the Art

Wednesday 18 October

16:00
Foundations of Qualitative Methods: Introduction and Overview (2 of 2) Finished 16:00 - 17:30 8 Mill Lane, Lecture Room 4

This course will introduce students to the general philosophical debates concerning scientific methodology, assessing their ramifications for the conduct of qualitative social research. It will enable students to critically evaluate major programmes in the philosophy of sciences, considering whether there are important analytic differences between the social and natural sciences; and whether qualitative methods themselves comprise a unified approach to the study of social reality.

Topics:

  • Session 1: Epistemological Foundations of Qualitative Social Research Part I
  • Session 2: Epistemological Foundations of Qualitative Social Research Part II

Monday 23 October

10:00
Foundations in Applied Statistics (FiAS-2) (1 of 4) Not bookable 10:00 - 12:00 8 Mill Lane, Lecture Room 1

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Foundations in Applied Statistics (FiAS-1) (1 of 4) Not bookable 10:00 - 12:00 8 Mill Lane, Lecture Room 1

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata.

You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Foundations in Applied Statistics (FiAS-1) (2 of 4) Not bookable 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata.

You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

16:00
Foundations in Applied Statistics (FiAS-2) (2 of 4) Not bookable 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Reading and Understanding Statistics (1 of 4) In progress 16:00 - 18:00 8 Mill Lane, Lecture Room 1

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.

Tuesday 24 October

14:00
Mixed Methods new [Places] 14:00 - 16:00 8 Mill Lane, Lecture Room 1

Neither quantitative nor qualitative data analysis has all the answers in social science research: qualitative research has depth and nuance but is not generalisable beyond the sample on which it is based, while quantitative research is generalisable but may lack depth.

A mixed methods approach, which uses evidence from both qualitative and quantitative approaches to shed light on a single research question, has the potential to gain the advantages of both approaches. However, genuine mixed methods work is not always easy. This short course will introduce students to the rationale behind the use of mixed methods approaches, and how to design mixed methods projects for best results.

16:00
Comparative Historical Methods (3 of 4) In progress 16:00 - 17:30 8 Mill Lane, Lecture Room 6

These four sessions will introduce students to comparative historical research methods, emphasizing their qualitative dimensions. In the first session, we will analyze some contemporary classics within this genre. In the second and third sessions, we will review and distinguish among a variety of intellectual justifications for this genre as a methodology. In the final session, we will focus on a "state of the art" defence of qualitative and comparative-historical research, both in theory and practice.

Aims:

  • To introduce students to the qualitative dimension of comparative historical research methods
  • To analyse some contemporary classics within this genre
  • To review and distinguish among the variety of intellectual justifications for this genre as a methodology
  • To focus on a 'state-of-the-art' defence of qualitative and comparative-historical research in theory and practice

Topics:

  • Session 1: Classics
  • Session 2: Justifications I
  • Session 3: Justifications II
  • Session 4: State of the Art

Wednesday 25 October

10:00
Foundations in Applied Statistics (FiAS-3) (1 of 4) Not bookable 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Foundations in Applied Statistics (FiAS-4) (1 of 4) Not bookable 10:00 - 12:00 Department of Genetics, Biffen Lecture, Downing Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Foundations in Applied Statistics (FiAS-3) (2 of 4) Not bookable 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

16:00
Psychometrics (1 of 4) [Places] 16:00 - 18:00 8 Mill Lane, Lecture Room 5

An introduction to the design, validation and implementation of tests and questionnaires in social science research, using both Classical Test Theory (CTT) and modern psychometric methods such as Item Response Theory (IRT). This course aims to enable students to: be able to construct and validate a test or questionnaire; understand the strengths, weaknesses and limitations of existing tests and questionnaires; appreciate the impact and potential of modern psychometric methods in the internet age.

Week 1: Introduction to psychometrics
a. Psychometrics, ancient and modern. Classical Test Theory
b. How to design and build your own psychometric test

Week 2: Testing in the online environment
a. Testing via the internet. How to, plus do’s and don’ts
b. Putting your test online

Week 3: Modern Psychometrics
a. Item Response Theory (IRT) models and their assumptions
b. Advanced assessment using computer adaptive testing

Week 4: Test development using Automatic Item Generation
a. How to automatically generate ability items
b. Examples from the ICAR project

Foundations in Applied Statistics (FiAS-4) (2 of 4) Not bookable 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Monday 30 October

10:00
Foundations in Applied Statistics (FiAS-2) (3 of 4) Not bookable 10:00 - 12:00 8 Mill Lane, Lecture Room 1

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Foundations in Applied Statistics (FiAS-1) (3 of 4) Not bookable 10:00 - 12:00 8 Mill Lane, Lecture Room 1

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata.

You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

14:00
Foundations in Applied Statistics (FiAS-1) (4 of 4) Not bookable 14:00 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata.

You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

16:00
Foundations in Applied Statistics (FiAS-2) (4 of 4) Not bookable 16:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

This is an introductory course for students who have little or no prior training in statistics. The module is divided between lectures, in which you'll learn the relevant theory, and hands-on practical sessions, in which you will learn how to analyze real data using the statistical package Stata. You will learn:

  • The key features of quantitative analysis, and how it differs from other types of empirical analysis
  • Basic concepts: what is a variable? what is the distribution of a variable? and how can we best represent a distribution graphically?
  • Features of statistical distributions: measures of central tendency and dispersion
  • The normal distribution
  • The basics of formal hypothesis testing
  • Why statistical testing works
  • Statistical methods used to test simple hypotheses
  • How to use Stata

For best results, students should expect to do a few hours of private study and spend a little extra time in the computer labs, in addition to coming to class.

Reading and Understanding Statistics (2 of 4) In progress 16:00 - 18:00 8 Mill Lane, Lecture Room 1

This module is for students who don’t plan to use quantitative methods in their own research, but who need to be able to read and understand published research using quantitative methods. You will learn how to interpret graphs, frequency tables and multivariate regression results, and to ask intelligent questions about sampling, methods and statistical inference. The module is aimed at complete beginners, with no prior knowledge of statistics or quantitative methods.