skip to navigation skip to content

Social Sciences Research Methods Programme course timetable

Show:

Tue 10 Mar – Mon 27 Apr

Now Today



Tuesday 10 March

14:00
Secondary Data Analysis Finished 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

Using secondary data (that is, data collected by someone else, usually a government agency or large research organisation) has a number of advantages in social science research: sample sizes are usually larger than can be achieved by primary data collection, samples are more nearly representative of the populations they are drawn from, and using secondary data for a research project often represents significant savings in time and money. This short course, taught by Dr Deborah Wiltshire of the UK Data Archive, will discuss the advantages and limitations of using secondary data for research in the social sciences, and will introduce students to the wide range of available secondary data sources. The course is based in a computer lab; students will learn how to search online for suitable secondary data by browsing the database of the UK Data Archive.

Wednesday 11 March

09:30
Multilevel Modelling (1 of 2) Finished 09:30 - 13:00 8 Mill Lane, Lecture Room 6

In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or family-level factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or family-level characteristics, as well as by the characteristics of the prison in which they are detained.

  • Introduction to Stata/MLM theory
  • Applications I - Random intercept models
  • Applications II - Random slope models
  • Applications III - Revision session/growth models
12:00
A Critical Analysis of Null Hypothesis Testing and its Alternatives (Including Bayesian Analysis) (2 of 2) Finished 12:00 - 17:00 Department of Psychology, Psychology Lecture Theatre

This course will provide a detailed critique of the methods and philosophy of the Null Hypothesis Significance Testing (NHST) approach to statistics which is currently dominant in social and biomedical science. We will briefly contrast NHST with alternatives, especially with Bayesian methods. We will use some computer code (Matlab and R) to demonstrate some issues. However, we will focus on the big picture rather on the implementation of specific procedures.

14:00
Multilevel Modelling (2 of 2) Finished 14:00 - 18:00 University Information Services, Titan Teaching Room 1, New Museums Site

In this module, students will be introduced to multilevel modelling, also known as hierarchical linear modelling. MLM allows the user to analyse how outcomes are influenced by factors acting at multiple levels. So, for example, we might conceptualise children's educational process as being influenced by individual or family-level factors, as well as by factors operating at the level of the school or the neighbourhood. Similarly, outcomes for prisoners might be influenced by individual and/or family-level characteristics, as well as by the characteristics of the prison in which they are detained.

  • Introduction to Stata/MLM theory
  • Applications I - Random intercept models
  • Applications II - Random slope models
  • Applications III - Revision session/growth models

Monday 16 March

10:00
Evaluation Methods (1 of 4) CANCELLED 10:00 - 12:45 8 Mill Lane, Lecture Room 6

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
13:45
Evaluation Methods (2 of 4) CANCELLED 13:45 - 17:00 University Information Services, Titan Teaching Room 1, New Museums Site

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.

Tuesday 17 March

10:00
Evaluation Methods (3 of 4) CANCELLED 10:00 - 12:45 8 Mill Lane, Lecture Room 6

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.
13:30
Evaluation Methods (4 of 4) CANCELLED 13:30 - 16:00 University Information Services, Titan Teaching Room 1, New Museums Site

This course aims to provide students with a range of specific technical skills that will enable them to undertake impact evaluation of policy. Too often policy is implemented but not fully evaluated. Without evaluation we cannot then tell what the short or longer term impact of a particular policy has been. On this course, students will learn the skills needed to evaluate particular policies and will have the opportunity to do some hands on data manipulation. A particular feature of this course is that it provides these skills in a real world context of policy evaluation. It also focuses primarily not on experimental evaluation (Random Control Trials) but rather quasi-experimental methodologies that can be used where an experiment is not desirable or feasible.

Topics:

  • Regression-based techniques
  • Evaluation framework and concepts
  • The limitations of regression based approaches and RCTs
  • Before/After, Difference in Difference (DID) methods
  • Computer exercise on difference in difference methods
  • Instrumental variables techniques
  • Regression discontinuity design.

Wednesday 18 March

11:00
Factor Analysis (5 of 6) Finished 11:00 - 13:00 8 Mill Lane, Lecture Room 2

This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

  • Session 1: Exploratory Factor Analysis Introduction
  • Session 2: Factor Analysis Applications
  • Session 3: CFA and Path Analysis with STATA
  • Session 4: Introduction to SEM and programming
14:00
Factor Analysis (6 of 6) Finished 14:00 - 16:00 University Information Services, Titan Teaching Room 2, New Museums Site

This module introduces the statistical techniques of Exploratory and Confirmatory Factor Analyses. Exploratory Factor Analysis (EFA) is used to uncover the latent structure (dimensions) of a set of variables. It reduces the attribute space from a larger number of variables to a smaller number of factors. Confirmatory Factor Analysis (CFA) examines whether collected data correspond to a model of what the data are meant to measure. STATA will be introduced as a powerful tool to conduct confirmatory factor analysis. A brief introduction will be given to confirmatory factor analysis and structural equation modelling.

  • Session 1: Exploratory Factor Analysis Introduction
  • Session 2: Factor Analysis Applications
  • Session 3: CFA and Path Analysis with STATA
  • Session 4: Introduction to SEM and programming

Monday 27 April

09:00
Introduction to Python new (1 of 2) CANCELLED 09:00 - 13:00 Institute of Criminology, Room B11

This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:

  • Ways of reading data into Python
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with Python
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.

14:00
Introduction to Python new (2 of 2) CANCELLED 14:00 - 18:00 Institute of Criminology, Room B11

This module introduces the use of Python, a free programming language originally developed for statistical data analysis. Students will learn:

  • Ways of reading data into Python
  • How to manipulate data in major data types
  • How to draw basic graphs and figures with Python
  • How to summarise data using descriptive statistics
  • How to perform basic inferential statistics


This module is suitable for students who have no prior experience in programming, but participants will be assumed to have a good working knowledge of basic statistical techniques.