skip to navigation skip to content

All Department of Chemistry courses

Show:
Show only:

Showing courses 1-10 of 84
Courses per page: 10 | 25 | 50 | 100

Chemistry: Careers - Dealing with Difficult Times new Tue 5 May 2020   11:00 Finished

The current situation is a difficult one, with labs closed, and the need for home-working (where possible). It is particularly challenging for those thinking about their post-Ph.D careers, where communication with potential employers is cut-off and job offers are being put back or cancelled.

This session is aimed at Ph.D students, especially those that are ‘in limbo’, unable to work in the Lab, isolated at home or whose job offers may have been delayed or cancelled.

Kevin Parker will narrate his own work experience, firstly at an Oil Company and then freelancing for 25 years, both in terms of what he did and the key personal skills needed to carry out each job.

The session will finish with an overview of the skills various important employers are looking for in graduate recruits, along with advice on how to survive job-hunting and/or home working.

Stuart Cantrill (Chief Editor, Nature Chemistry) will discuss the publishing process and what goes on in the editorial office, as well as providing some guidance on how to write a paper, how to write an abstract and some DOs and DON'Ts when it comes to titles and graphical abstracts. There will also be broader consideration of peer review in general, the wider chemistry publishing landscape and also other aspects such as metrics (impact factor, altmetrics, etc) and the use of social media.

This session will take place via Zoom, please register at https://tinyurl.com/ydh5ar3l

Chemistry: CDT Electronic Lab Notebook (ELN) training new Thu 13 May 2021   09:00 Finished

The session will cover the use of electronic laboratory notebook which is a computer programme designed to replace laboratory notebooks. ELN will help the users to document research, experiments and procedures performed in a laboratory.

Join Zoom Meeting https://us02web.zoom.us/j/7507381413 Meeting ID: 750 738 1413

An applied introduction to probabilistic modelling, machine learning and artificial intelligence-based approaches for students with little or no background in theory and modelling. The course will be taught through a series of case studies from the current literature in which modelling approaches have been applied to large datasets from chemistry and biochemistry. Data and code will be made available to students and discussed in class. Students will become familiar with python based tools that implement the models though practical sessions and group based assignments.

The course will introduce the general methodology of model development, including techniques for model identification and parameter estimation. The idea of model-based design of experiments will be introduced and linked to parameter estimation. Tools for model development and MBDoE will also be introduced.

Chemistry plays a very crucial role in tackling 21st century global challenges. From climate change mitigation to discovering therapeutic strategies for human health and driving sustainable energy production and usage - we are faced with many challenges for which chemical sciences has been providing and will continue to provide many plausible solutions.

Much of the research involved in developing these initiatives requires a huge drive towards interdisciplinary research networks. As such, this course has been developed with some of our colleagues from across the Chemistry Department who are working on exciting and emerging areas with this multidisciplinary focus.

This course will introduce how chemistry can be used as a tool to solve these challenges. First session will include the introduction. Each lecture following this will focus on a different branch, area or concept of chemistry covering the fundamental chemistry and background of how it works, any advances to date and the applications towards tackling these global challenges.

The first session is compulsory, plus choose optional sessions you wish to attend when you make your booking.

  • Session 1: Introduction
  • Session 2: Organic Electronics
  • Session 3: Electrochemistry (Batteries)

PhD students have plenty of options once you graduate. In this interactive session we will look at the pros and cons of different career options. You will have a chance to think about what you want your work to do for you and what you can offer employers, and you will learn ways to find out more about jobs in which you are interested. It is recommended that you attend both sessions.

  • Session 1 - What jobs are out there and deciding what is ‘right’ for me?

Chemistry PhD students have many options after graduation. In this 1-hour session we will explore the pros and cons of different career choices. We will also consider how to assess which options would work for you.

  • Session 2 - Career options for PhDs in chemistry

In this second 1-hour session we will focus on generating specific job ideas, how you might structure your careers ‘research’, key questions to ask and timelines for starting your ‘search’ for your next step after Cambridge.

Starting to apply for jobs both in and outside academia? Preparing for an interview? Not sure how to target your application, what to include and what to leave out. In this session you can learn more about how selection processes work including how to put together a CV and cover letter and how to prepare for job interviews. The workshop will include interactive exercises, a review of successful application materials, and discussions.

Chemistry: CT10 Vibrational Spectroscopy new Thu 12 Dec 2019   10:00 Finished

Spectroscopic methods in biochemistry and biophysics are powerful tools to characterise the chemical properties of samples in chemistry and biology, including molecules, macromolecules, living organisms, polymers and materials. Within the wide class of biophysical methods, infrared spectroscopy (IR) is a sensitive analytical label-free tool able to identify the chemical composition and properties of a sample through its molecular vibrations, which produce a characteristic fingerprint spectrum. An infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy. The energy at which any peak in an absorption spectrum appears corresponds to the frequency of a vibration of a part of a sample molecule. One of the great advantages of infrared spectroscopy is that virtually any sample in virtually any state may be studied, such as liquids, solutions, pastes, powders, films, fibres, gases and surfaces can all be examined. In this introductory course, the basic ideas and definitions associated with infrared spectroscopy will be described. First, the possible configurations of the spectrometers used to measure IR absorption will be discussed. Then, the vibrations of molecules, inorganic and organic chemical compounds, as well as large biomolecules will be introduced, as these are crucial to the interpretation of infrared spectra in every day experimental life.

This session is compulsory for all experimentalists to attend and will provide useful information regarding analytical facilities at this Department including NMR, Mass Spectrometry, X-ray Crystallography, Microanalysis and Electron Microscopy. Short descriptions will be given of all available instruments, as well as explain the procedures for preparing/submitting samples for the analysis will also be discussed.

Once you book on to this course, you will receive a link to preregister for this course on Zoom.

[Back to top]