skip to navigation skip to content
- Select training provider - (Bioinformatics)

Bioinformatics Training

Bioinformatics course timetable

Show:

Fri 23 May – Wed 16 Jul

Now Today



May 2025

Fri 23
Core Statistics using R or Python (ONLINE LIVE TRAINING) (2 of 3) [Places] 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training

This award winning course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is an open source programming language so all of the software we will use in the course is free.

In this course, we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to linear models and power analyses. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Bulk RNA-seq analysis (IN-PERSON) (3 of 3) [Full] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

In this course you will acquire practical skills in RNA-seq data analysis. You will learn about quality control, alignment, and quantification of gene expression against a reference transcriptome. Additionally, you will learn to conduct downstream analysis in R, exploring techniques like PCA and clustering for exploratory analysis. The course also covers differential expression analysis using the DESeq2 R/Bioconductor package. Furthermore, the course covers how to generate visualisations like heatmaps and performing gene set testing to link differential genes with established biological functions or pathways.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Fri 30
Core Statistics using R or Python (ONLINE LIVE TRAINING) (3 of 3) [Places] 09:30 - 17:30 Bioinformatics Training Facility - Online LIVE Training

This award winning course is intended to provide a strong foundation in practical statistics and data analysis using the R software environment. The underlying philosophy of the course is to treat statistics as a practical skill rather than as a theoretical subject and as such the course focuses on methods for addressing real-life issues in the biological sciences.

There are three core goals for this course:

  1. Use R confidently for statistics and data analysis
  2. Be able to analyse datasets using standard statistical techniques
  3. Know which tests are and are not appropriate

R is an open source programming language so all of the software we will use in the course is free.

In this course, we explore classical statistical analysis techniques starting with simple hypothesis testing and building up to linear models and power analyses. The focus of the course is on practical implementation of these techniques and developing robust statistical analysis skills rather than on the underlying statistical theory.

After the course you should feel confident to be able to select and implement common statistical techniques using R and moreover know when, and when not, to apply these techniques.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.

June 2025

Mon 9
Introduction to the Unix command line (IN-PERSON) [Places] 09:30 - 17:30 Bioinformatics Training Facility - The Pembroke Teaching Rooms

The Unix shell (command line) is a powerful and essential tool for modern researchers, in particular those working in computational disciplines such as bioinformatics and large-scale data analysis. In this course we will explore the basic structure of the Unix operating system and how we can interact with it using a basic set of commands. You will learn how to navigate the filesystem, manipulate text-based data and combine multiple commands to quickly extract information from large data files. You will also learn how to write scripts and use programmatic techniques to automate task repetition.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Tue 10
Metabolomics data analysis (IN-PERSON) (1 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

The goal of metabolomics is to identify and quantify the complete biochemical composition of a biological sample. With the increase in genomic, transcriptomic and proteomic information there is a growing need to understand the metabolic phenotype that these genes and proteins ultimately control.

The aim of this course is to provide an introductory overview of metabolomics and its applications in life sciences and environmental settings. We will introduce different techniques used to extract metabolites and analyse samples to collect metabolomic data (such as HPLC or GC-based MS and NMR), present how to analyse such data, how to identify metabolites using online databases and how to map the metabolomic data to metabolic pathways.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Wed 11
Metabolomics data analysis (IN-PERSON) (2 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

The goal of metabolomics is to identify and quantify the complete biochemical composition of a biological sample. With the increase in genomic, transcriptomic and proteomic information there is a growing need to understand the metabolic phenotype that these genes and proteins ultimately control.

The aim of this course is to provide an introductory overview of metabolomics and its applications in life sciences and environmental settings. We will introduce different techniques used to extract metabolites and analyse samples to collect metabolomic data (such as HPLC or GC-based MS and NMR), present how to analyse such data, how to identify metabolites using online databases and how to map the metabolomic data to metabolic pathways.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Mon 23
Generalised linear models (IN-PERSON) [Places] 09:30 - 17:00 Bioinformatics Training Room, Craik-Marshall Building

Generalised linear models are the kind of models we would use if we had to deal with non-continuous response variables. For example, this happens if you have count data or a binary outcome.

This course aims to introduce generalised linear models, using the R software environment. Similar to Core statistics using R this course addresses the practical aspects of using these models, so you can explore real-life issues in the biological sciences. The Generalised linear models course builds heavily on the knowledge gained in the core statistics sessions, which means that the Core statistics using R course is a firm prerequisite for joining.

There are several aims to this course:

1. Be able to distinguish between linear models and generalised linear models

2. Analyse binary outcome and count data using R

3. Critically assess model fit

R is an open-source programming language so all of the software we will use in the course is free. We will be using the R Studio interface throughout the course. Most of the code will be focussed around the tidyverse and tidymodels packages, so a basic understanding of the tidyverse syntax is essential.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Tue 24
Expression proteomics analysis in R (IN-PERSON) (1 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This workshop focuses on expression proteomics, which aims to characterise the protein diversity and abundance in a particular system. You will learn about the bioinformatic analysis steps involved when working with these kind of data, in particular several dedicated proteomics Bioconductor packages, part of the R programming language. We will use real-world datasets obtained from label free quantitation (LFQ) as well as tandem mass tag (TMT) mass spectrometry. We cover the basic data structures used to store and manipulate protein abundance data, how to do quality control and filtering of the data, as well as several visualisations. Finally, we include statistical analysis of differential abundance across sample groups (e.g. control vs. treated) and further evaluation and biological interpretation of the results via gene ontology analysis. By the end of this workshop you should have the skills to make sense of expression proteomics data, from start to finish.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Wed 25
Expression proteomics analysis in R (IN-PERSON) (2 of 2) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This workshop focuses on expression proteomics, which aims to characterise the protein diversity and abundance in a particular system. You will learn about the bioinformatic analysis steps involved when working with these kind of data, in particular several dedicated proteomics Bioconductor packages, part of the R programming language. We will use real-world datasets obtained from label free quantitation (LFQ) as well as tandem mass tag (TMT) mass spectrometry. We cover the basic data structures used to store and manipulate protein abundance data, how to do quality control and filtering of the data, as well as several visualisations. Finally, we include statistical analysis of differential abundance across sample groups (e.g. control vs. treated) and further evaluation and biological interpretation of the results via gene ontology analysis. By the end of this workshop you should have the skills to make sense of expression proteomics data, from start to finish.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Working on HPC clusters (ONLINE LIVE TRAINING) (1 of 3) [Places] 09:30 - 13:00 Bioinformatics Training Facility - Online LIVE Training

Knowing how to use High Performance Computing (HPC) systems is crucial for fields such as bioinformatics, big data analysis, image processing, machine learning, parallel task execution, and other high-throughput applications.

In this introductory course, you will learn the fundamentals of HPC, including what it is and how to effectively utilise it. We will cover best practices for working with HPC systems, explain the roles of "login" and "compute" nodes, outline the typical filesystem organization on HPC clusters, and cover job scheduling with the widely-used SLURM scheduler.

This hands-on workshop is designed to be accessible to researchers from various backgrounds, providing numerous opportunities to practice and apply the skills you acquire.

As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Thu 26
Working on HPC clusters (ONLINE LIVE TRAINING) (2 of 3) [Places] 09:30 - 13:00 Bioinformatics Training Facility - Online LIVE Training

Knowing how to use High Performance Computing (HPC) systems is crucial for fields such as bioinformatics, big data analysis, image processing, machine learning, parallel task execution, and other high-throughput applications.

In this introductory course, you will learn the fundamentals of HPC, including what it is and how to effectively utilise it. We will cover best practices for working with HPC systems, explain the roles of "login" and "compute" nodes, outline the typical filesystem organization on HPC clusters, and cover job scheduling with the widely-used SLURM scheduler.

This hands-on workshop is designed to be accessible to researchers from various backgrounds, providing numerous opportunities to practice and apply the skills you acquire.

As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Introduction to R (IN-PERSON) (1 of 2) Not bookable 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Note: This iteration of the course is currently not open for booking. However, please register your interest here to be notified when spaces become available. Your registration ensures you will be the first to know.


R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Fri 27
Working on HPC clusters (ONLINE LIVE TRAINING) (3 of 3) [Places] 09:30 - 13:00 Bioinformatics Training Facility - Online LIVE Training

Knowing how to use High Performance Computing (HPC) systems is crucial for fields such as bioinformatics, big data analysis, image processing, machine learning, parallel task execution, and other high-throughput applications.

In this introductory course, you will learn the fundamentals of HPC, including what it is and how to effectively utilise it. We will cover best practices for working with HPC systems, explain the roles of "login" and "compute" nodes, outline the typical filesystem organization on HPC clusters, and cover job scheduling with the widely-used SLURM scheduler.

This hands-on workshop is designed to be accessible to researchers from various backgrounds, providing numerous opportunities to practice and apply the skills you acquire.

As an optional session for those interested, we will also introduce the (free) HPC facilities available at Cambridge University (the course is not otherwise Cambridge-specific).


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Introduction to R (IN-PERSON) (2 of 2) Not bookable 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Note: This iteration of the course is currently not open for booking. However, please register your interest here to be notified when spaces become available. Your registration ensures you will be the first to know.


R is one of the leading programming languages in Data Science. It is widely used to perform statistics, machine learning, visualisations and data analyses. It is an open source programming language so all the software we will use in the course is free. This course is an introduction to R designed for participants with no programming experience. We will start from scratch by introducing how to start programming in R and progress our way and learn how to read and write to files, manipulate data and visualise it by creating different plots - all the fundamental tasks you need to get you started analysing your data. During the course we will be working with one of the most popular packages in R; tidyverse that will allow you to manipulate your data effectively and visualise it to a publication level standard.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Mon 30
Working with Bacterial Genomes (IN-PERSON) (1 of 4) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This comprehensive course equips you with essential skills and knowledge in bacterial genomics analysis, primarily using Illumina-sequenced samples. You'll gain an understanding of how to select the most appropriate analysis workflow, tailored to the genome diversity of a given bacterial species. Through hands-on training, you'll apply both de novo assembly and reference-based mapping approaches to obtain bacterial genomes for your isolates. You will apply standardised workflows for genome assembly and annotation, including quality assessment criteria to ensure the reliability of your results. Along with typing bacteria using methods such as MLST, you'll learn how to construct phylogenetic trees using whole genome and core genome alignments, enabling you to explore the evolutionary relationships among bacterial isolates. You’ll extend this to estimate a time-scaled phylogeny using a starting phylogenetic tree. Lastly, you'll apply methods to detect antimicrobial resistance genes. As examples we will use Mycobacterium tuberculosis, Staphylococcus aureus and Streptococcus pneumoniae, allowing you to become well-equipped to conduct bacterial genomics analyses on a range of species.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.

July 2025

Tue 1
Working with Bacterial Genomes (IN-PERSON) (2 of 4) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This comprehensive course equips you with essential skills and knowledge in bacterial genomics analysis, primarily using Illumina-sequenced samples. You'll gain an understanding of how to select the most appropriate analysis workflow, tailored to the genome diversity of a given bacterial species. Through hands-on training, you'll apply both de novo assembly and reference-based mapping approaches to obtain bacterial genomes for your isolates. You will apply standardised workflows for genome assembly and annotation, including quality assessment criteria to ensure the reliability of your results. Along with typing bacteria using methods such as MLST, you'll learn how to construct phylogenetic trees using whole genome and core genome alignments, enabling you to explore the evolutionary relationships among bacterial isolates. You’ll extend this to estimate a time-scaled phylogeny using a starting phylogenetic tree. Lastly, you'll apply methods to detect antimicrobial resistance genes. As examples we will use Mycobacterium tuberculosis, Staphylococcus aureus and Streptococcus pneumoniae, allowing you to become well-equipped to conduct bacterial genomics analyses on a range of species.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Wed 2
Working with Bacterial Genomes (IN-PERSON) (3 of 4) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This comprehensive course equips you with essential skills and knowledge in bacterial genomics analysis, primarily using Illumina-sequenced samples. You'll gain an understanding of how to select the most appropriate analysis workflow, tailored to the genome diversity of a given bacterial species. Through hands-on training, you'll apply both de novo assembly and reference-based mapping approaches to obtain bacterial genomes for your isolates. You will apply standardised workflows for genome assembly and annotation, including quality assessment criteria to ensure the reliability of your results. Along with typing bacteria using methods such as MLST, you'll learn how to construct phylogenetic trees using whole genome and core genome alignments, enabling you to explore the evolutionary relationships among bacterial isolates. You’ll extend this to estimate a time-scaled phylogeny using a starting phylogenetic tree. Lastly, you'll apply methods to detect antimicrobial resistance genes. As examples we will use Mycobacterium tuberculosis, Staphylococcus aureus and Streptococcus pneumoniae, allowing you to become well-equipped to conduct bacterial genomics analyses on a range of species.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Thu 3
Working with Bacterial Genomes (IN-PERSON) (4 of 4) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

This comprehensive course equips you with essential skills and knowledge in bacterial genomics analysis, primarily using Illumina-sequenced samples. You'll gain an understanding of how to select the most appropriate analysis workflow, tailored to the genome diversity of a given bacterial species. Through hands-on training, you'll apply both de novo assembly and reference-based mapping approaches to obtain bacterial genomes for your isolates. You will apply standardised workflows for genome assembly and annotation, including quality assessment criteria to ensure the reliability of your results. Along with typing bacteria using methods such as MLST, you'll learn how to construct phylogenetic trees using whole genome and core genome alignments, enabling you to explore the evolutionary relationships among bacterial isolates. You’ll extend this to estimate a time-scaled phylogeny using a starting phylogenetic tree. Lastly, you'll apply methods to detect antimicrobial resistance genes. As examples we will use Mycobacterium tuberculosis, Staphylococcus aureus and Streptococcus pneumoniae, allowing you to become well-equipped to conduct bacterial genomics analyses on a range of species.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Thu 10
Introduction to Python (ONLINE LIVE TRAINING) (1 of 2) [Places] 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Single-cell RNA-seq analysis (IN-PERSON) (1 of 3) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Recent technological advances have made it possible to obtain genome-wide transcriptome data from single cells using high-throughput sequencing. This course offers an introduction to single-cell RNA sequencing (scRNA-seq) analysis. Participants will gain hands-on experience with key software packages and methodologies for processing, analyzing, and interpreting scRNA-seq data. Key topics include data preprocessing, quality control, normalization, dimensionality reduction, batch correction and data integration, cell clustering and differential expression and abundance analysis. By the end of the course, students will be equipped with the skills to independently conduct and critically analyse data from scRNA-seq experiments.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Fri 11
Introduction to Python (ONLINE LIVE TRAINING) (2 of 2) [Places] 09:30 - 17:00 Bioinformatics Training Facility - Online LIVE Training

This course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead through the core concepts of Python including Python syntax, data structures and reading/writing files. These are illustrated by a series of example programs. Upon completion of the course, participants will be able to write simple Python programs.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
Single-cell RNA-seq analysis (IN-PERSON) (2 of 3) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Recent technological advances have made it possible to obtain genome-wide transcriptome data from single cells using high-throughput sequencing. This course offers an introduction to single-cell RNA sequencing (scRNA-seq) analysis. Participants will gain hands-on experience with key software packages and methodologies for processing, analyzing, and interpreting scRNA-seq data. Key topics include data preprocessing, quality control, normalization, dimensionality reduction, batch correction and data integration, cell clustering and differential expression and abundance analysis. By the end of the course, students will be equipped with the skills to independently conduct and critically analyse data from scRNA-seq experiments.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Mon 14
Single-cell RNA-seq analysis (IN-PERSON) (3 of 3) [Places] 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Recent technological advances have made it possible to obtain genome-wide transcriptome data from single cells using high-throughput sequencing. This course offers an introduction to single-cell RNA sequencing (scRNA-seq) analysis. Participants will gain hands-on experience with key software packages and methodologies for processing, analyzing, and interpreting scRNA-seq data. Key topics include data preprocessing, quality control, normalization, dimensionality reduction, batch correction and data integration, cell clustering and differential expression and abundance analysis. By the end of the course, students will be equipped with the skills to independently conduct and critically analyse data from scRNA-seq experiments.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Tue 15
Linear mixed effects models (IN-PERSON) (1 of 2) Not bookable 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Note: This iteration of the course is currently not open for booking. However, please register your interest here to be notified when spaces become available. Your registration ensures you will be the first to know.


This course gives an introduction to linear mixed effects models, also called multi-level models or hierarchical models, for the purposes of using them in your own research or studies.

We emphasise the practical skills and key concepts needed to work with these models, using applied examples and real datasets.

After completing the course, you should have:

  • A conceptual understanding of what mixed effects models are, and when they should be used
  • Familiarity with fitting and interpreting mixed effects models using the lme4 package in R

Please note that this course builds on knowledge of linear modelling, therefore should not be considered a general introduction to statistical modelling.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.
Wed 16
Linear mixed effects models (IN-PERSON) (2 of 2) Not bookable 09:30 - 17:30 Bioinformatics Training Room, Craik-Marshall Building

Note: This iteration of the course is currently not open for booking. However, please register your interest here to be notified when spaces become available. Your registration ensures you will be the first to know.


This course gives an introduction to linear mixed effects models, also called multi-level models or hierarchical models, for the purposes of using them in your own research or studies.

We emphasise the practical skills and key concepts needed to work with these models, using applied examples and real datasets.

After completing the course, you should have:

  • A conceptual understanding of what mixed effects models are, and when they should be used
  • Familiarity with fitting and interpreting mixed effects models using the lme4 package in R

Please note that this course builds on knowledge of linear modelling, therefore should not be considered a general introduction to statistical modelling.


If you do not have a University of Cambridge Raven account please book or register your interest here.

If for any reason the above links do not work, please email Research Informatics Training Team with details of your course enquiry.

Additional information
  • ♿ The training room is located on the first floor and there is currently no wheelchair or level access.
  • Our courses are only free for registered University of Cambridge students. All other participants will be charged according to our charging policy.
  • Attendance will be taken on all courses and a charge is applied for non-attendance. After you have booked a place, if you are unable to attend any of the live sessions, please email the Research Informatics Training Team.
  • Further details regarding eligibility criteria are available here.
  • Guidance on visiting Cambridge and finding accommodation is available here.